Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T04:11:18.667Z Has data issue: false hasContentIssue false

Kinetics of Pt Silicide Formation Studied by Spectral Ellipsometry

Published online by Cambridge University Press:  10 February 2011

R. Schwarz
Affiliation:
Instituto Superior Técnico, Departamento de Física, P-1096 Lisboa, Portugal
A. Dittrich
Affiliation:
Universität Erlangen-Nürnberg, Institut für Technische Physik, D-91058 Erlangen, Germany
S. M. Zhou
Affiliation:
Universität Erlangen-Nürnberg, Institut für Technische Physik, D-91058 Erlangen, Germany
M. Hundhausen
Affiliation:
Universität Erlangen-Nürnberg, Institut für Technische Physik, D-91058 Erlangen, Germany
L. Ley
Affiliation:
Universität Erlangen-Nürnberg, Institut für Technische Physik, D-91058 Erlangen, Germany
L. Y. Chen
Affiliation:
Fudan University, Center for Applied Physics, Shanghai 200 433, China
D. Woerle
Affiliation:
Universität Erlangen-Nürnberg, Institut für Angewandte Physik, D-91058 Erlangen, Germany
C. Manke
Affiliation:
Universität Erlangen-Nürnberg, Institut für Angewandte Physik, D-91058 Erlangen, Germany
M. Schulz
Affiliation:
Universität Erlangen-Nürnberg, Institut für Angewandte Physik, D-91058 Erlangen, Germany
Get access

Abstract

Suicide formation during thermal annealing of thin Pt layers deposited by evaporation onto crystalline silicon substrates was studied by in-situ spectral ellipsometry. As was shown in an earlier study, Pt suicide is formed in a two-step process with intermediate stages of Pt2Si and PtSi at temperatures of about 190 and 240 °C, respectively. We observed a shift of about 15 °C of the di- and monosilicide formation, when the anneal rate was lowered from 3 to 1 K/min. The analysis of the reaction kinetics using the normalized ellipsometric angle δ yields a good fit to the data for different anneal rates with an activation energy of (1.6 ± 0.2) eV. The underlying model of suicide formation through a multilayer system was checked with depth profiles and compositional information obtained from Rutherford Backscattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kosonocky, W.F., Shallcross, F.V., Villani, T.S., Groppe, J.V., IEEE Trans. on Electr. Dev. ED- 32(1985)1564.Google Scholar
2. Cabanski, W.A., Schulz, M.J., Proc. SPIE Conf., Orlando, FL, 1991.Google Scholar
3. Lahnor, P., Woerle, D., Schulz, M., Appl. Phys. A64 (1997) 101Google Scholar
4. Lahnor, P., Seiter, K., Schulz, M., Dorsch, W., Scholz, R., Appl. Phys. A61 (1995) 369.Google Scholar
5. Muta, H., Shinoda, D., J. Appl. Phys. 43 (1972) 2913.Google Scholar
6. Rodriguez, T., Almendra, A., da Silva, M.F., Soares, J.C., Wolters, H., Rodriguez, A., and Sanz Maudes, J., Nucl. Instr. & Meth. B113 (1996) 279.Google Scholar
7. Lange, H., Henrion, W., Jahne, E., Giehler, M., Guenther, O., Schumann, J., Mat. Res. Soc. Symp. Proc. 324 (1994). Zettler, Th., Schumann, J., Lange, H., to be published.]Google Scholar
8. Ley, L., Wang, Y., Nguyen Van, V., Fisson, S., Souche, D., Vuye, G., Rivory, J., Thin Solid films 270(1995)561.Google Scholar