Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-18T16:58:49.386Z Has data issue: false hasContentIssue false

Large area Pulsed Laser Deposition of Aurivillius-Type Layered Perovskite Thin Films

Published online by Cambridge University Press:  10 February 2011

A. Pignolet
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
C. Curran
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
S. Welke
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
S. Senz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
M. Alexe
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
U. Gösele
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
Get access

Abstract

Thin films of Aurivillius-type layered perovskites of Bi4Ti3O12 and SrBi2Ta2O9 have been epitaxially deposited by pulsed laser deposition (PLD) on SrTiO3 single crystal substrates. Bi4 Ti3O12 has been deposited as well on a CeO2JYSZ/Si(100) buffer layer, and on Pt-coated oxidized silicon for electrical measurements. Using a new technique for large area PLD, Bi4Ti3O12 has also been deposited on a whole (100)-oriented 3”- Si wafer. The obtained films have a uniform thickness over a diameter greater than 50 mm, corresponding to an area of about 20 cm2. It is likely that homogeneous deposition on entire wafers of 3-inch in diameter will be accomplished in the near future. The composition, structure, and electrical properties of the films are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Okamoto, K., Nasu, Y. and Hamakawa, Y., IEEE Transactions on Electron Devices ED-28, 698 (1981).Google Scholar
2. Takayama, R., Tomita, Y., lijima, K. and Ueda, I., J. Appl. Phys. 61, 411 (1987).Google Scholar
3. Takayama, R., Tomita, Y., Iijima, K. and Ueda, I., J. Appl. Phys. 63, 5868 (1988).Google Scholar
4. lijima, K., Kawashima, S. and Ueda, I., Jpn. J. Appl. Phys 24–2, 482 (1985).Google Scholar
5. Okuyama, M. and Hamakawa, Y., Sensors and Materials 1, 13 (1988).Google Scholar
6. Scott, J. F. and Araujo, C. A. Paz de, Science 246, 1400 (1989).Google Scholar
7. Wu, S. Y., Takei, W. J. and Francombe, M. H., Ferroelectrics 10, 209 (1976).Google Scholar
8. Yoo, I. K. and Desu, S. B., Journal of Intelligent Material Systems and Structures 4, 490 (1993).Google Scholar
9. Eom, C. B., Dover, R. B. Van, Phillips, J. M., Werder, D. J.; Marshall, J. H., Chen, C. H., Cavaand, R. J. Fleming, R. M., Appl. Phys. Lett. 63, 2570 (1993).Google Scholar
10. Ramesh, R., Gilchrist, H., Sand, T., Keramidas, V. G., Haakenaasen, R. and Fork, D. K., Appl. Phys. Lett. 63, 3592 (1993).Google Scholar
11. Al-Shareef, H. N., Thin Solid Films 256, 73 (1995).Google Scholar
12. Symetrix Corporation, International Patent # HOlL 27 / 115, 21 / 3205, 29 / 92 (1992)Google Scholar
13. Sreenivas, K., Sayer, M. and Garrett, P., Thin Solid Films 172, 251 (1989).Google Scholar
14. Potdar, H. S., Sathaye, S. D., Mandale, A. B. and Date, S. K., Materials Letters 9, 71 (1990).Google Scholar
15. Dengquan, X., Zhili, X., Jumu, Z., Derui, W., Huachong, G., Bizheng, X. and Hong, Y., Appl. Phys. Lett. 58, 36 (1991).Google Scholar
16. Tabata, H., Tanakaand, H. Kawai, T., Jpn. J. Appl. Phys. 34, 5146 (1995).Google Scholar
17. Wu, W., Fumoto, K., Oishi, Y., Okuyama, M. and Hamakawa, Y., Jpn. J. Appl. Phys. 34, 5141 (1995).Google Scholar
18. Desu, S. B. and Vijay, D. P, Mater, Sci. & Eng. B 32, 75 (1995).Google Scholar
19. Greer, J. A. and Tabat, M. D., J. Vac. Sci. Technol. A13, 1175, (1995).Google Scholar
20. Dietsch, R., Holz, Th., Mai, H., Panzner, M. and Völlmar, S., Optical and Quantum Electronics 27, 1385 (1995).Google Scholar
21. Lorentz, M., Natusch, D., Börner, H., Hochmuth, H. and Unger, K., EUCAS'95 proceedings, EUCAS, Oct 4–8.1993, Göttingen, Germany.Google Scholar
22. Correra, L. and Nicoletti, S., Mater. Sci. & Eng. B 32, 33 (1995).Google Scholar
23. Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Proc. 200, San Francisco, 1990).Google Scholar
24. Adachi, H., Mitsuyu, T., Yamazaki, O. and Wasa, K., I. Appl. Phys. 60, 736 (1986).Google Scholar
25. Adachi, M., Matsuzaki, T., Yamada, T., Shiosaki, T. and Kawabata, A., Jpn. J. Appl. Phys. 26, 550 (1987).Google Scholar
26. Iijima, K., Takayama, R., Tomita, Y. and Ueda, I., J. Appl. Phys. 60, 2914 (1986).Google Scholar
27. Okuyama, M., Ueda, T. and Hamakawa, Y., Jpn. J. Appl. Phys. 24, 619 (1985).Google Scholar