Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T22:26:51.087Z Has data issue: false hasContentIssue false

Laser–Recrystallized SOI Devices: Promises and Pitfalls

Published online by Cambridge University Press:  21 February 2011

T I Kamins*
Affiliation:
Hewlett–Packard Laboratories, Palo Alto Ca 94304
Get access

Abstract

Recrystallized SOI structures offer possibilities for new classes of devices, as well as improved performance of more conventional circuitry. Single-layer and multilayer circuits are possible. For large–geometry devices unseeded films should be satisfactory, but seeding will be required for high–performance, small–geometry circuits. In addition to the quality of the recrystallized film and the substrate, the properties of the interfaces must be optimized. The characteristics of each potential heat source must be considered when selecting one for a specific SOI structure; different sources will be optimum for different applications. The evolution of SOI device structures can be seen by considering different realizations of CMOS cells. SOI structures can be applied to conventional circuits and also should allow efficient integration of entire systems with closely interacting functions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Le, H P and Lam, H W, IEEE Electron Device Lett EDL-3, 161 (1982)10.1109/EDL.1982.25522Google Scholar
2. Drowley, C I and Kamins, T I, Mat Res Soc Symp Proc 13, 511 (1983)10.1557/PROC-13-511Google Scholar
3. Miyao, M, Ohkura, M, Takemoto, I, Tamura, M, and Tokuyama, T, Appl Phys Lett 41, 59 (1982)10.1063/1.93328Google Scholar
4. Kamins, T I and Drowley, C I, IEEE Electron Device Lett EDL-3, 363 (1982)10.1109/EDL.1982.25601Google Scholar
5. Kamins, T I, Appl Phys Lett 42, 832 (1983)10.1063/1.94079Google Scholar
6. Tsaur, B-Y, Fan, J C C, andGeis, M W, Appl Phys Lett 40, 322 (1982)10.1063/1.93077CrossRefGoogle Scholar
7. Sakurai, J,Kawamura, S,Nakano, M, andTakagi, M, Appl Phys Lett 41, 64 (1982)10.1063/1.93330Google Scholar
8. Colinge, J P,Demoulin, E,Bensahel, D, andAuvert, G, Appl Phys Lett 41, 346 (1982)10.1063/1.93507CrossRefGoogle Scholar
9. Drowley, C I,Zorabedian, P, andKamins, T I, Mat Res Soc Symp Proc (Boston Meeting, November 1983).Google Scholar
10. Hawkins, W G,Black, J G, andGriffiths, C H, Appl Phys Lett 40, 319 (1982)10.1063/1.93076CrossRefGoogle Scholar
11. Kamins, T I andHerzen, B P Von, IEEE Electron Device Lett EDL-2, 313 (1981)10.1109/EDL.1981.25447CrossRefGoogle Scholar
12. Kamins, T I,IEEE Electron Device Lett EDL-3, 341 (1982)10.1109/EDL.1982.25594Google Scholar
13. Gibbons, J F andLee, K F, IEEE Electron Device Lett EDL-1, 117 (1980)10.1109/EDL.1980.25252CrossRefGoogle Scholar
14. Kawamura, S,Sasaki, N,Iwai, T, Mukai, R,Nakano, M, andTakagi, M, Int'l Electron Dev Mtg (Washington, DC, Dec 1983), paper 14.5. Google Scholar
15. Chen, C-E, Lam, H W,Malhi, S D S, andPinizzotto, R F, IEEE Electron Device Lett EDL-4, 272 (1983)10.1109/EDL.1983.25730Google Scholar
16. Jolly, R D,Kamins, T I, andMcCharles, R H, IEEE Electron Device Lett EDL-4, 8 (1983)10.1109/EDL.1983.25626Google Scholar
17. Gibbons, J F, Stanford UniversityGoogle Scholar