Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-16T20:55:38.931Z Has data issue: false hasContentIssue false

Lessons from Simulation Regarding the Control of Synthetic Self-Assembly

Published online by Cambridge University Press:  26 February 2011

Jack F. Douglas
Affiliation:
jack.douglas@nist.gov, NIST, Polymers Division, 100 Bureau Drive, Gaithersburg, MD, 20899, United States, 301-975-6779
Kevin Van Workum
Affiliation:
National Institute of Standards and Technology, Polymers Division, Gaithersburg, Maryland 20899
Get access

Abstract

We investigate the role of particle potential symmetry on self-assembly by Monte Carlo simulation with the particular view towards synthetically creating structures of prescribed form and function. First, we establish a general tendency for the rotational potential symmetries of the particles to be locally preserved upon self-assembly. Specifically, we find that a dipolar particle potential, having a continuous rotational symmetry about the dipolar axis, gives rise to chain formation, while particles with multipolar potentials (e.g., square quadrupole) having discrete rotational symmetries led to the self-assembly of random surface polymers preserving the rotational symmetries of the particles within these sheet structures. Surprisingly, these changes in self-assembly geometry with the particle potential symmetry are also accompanied by significant changes in the thermodynamic character and in the kinetics of the self-assembly process. Linear chain growth involves a continuous chain growth process in which the chains break and reform readily, while the growth of the two-dimensional polymers only occurs after an ‘initiation’ or ‘nucleation’ time that fluctuates from run to run. We show that the introduction of artificial seeds provides an effective method for controlling the structure and growth kinetics of sheet-like polymers. The significance of these distinct modes of polymerization on the functional character of self-assembly growth is illustrated by constructing an artificial centrosome structure derived from particles having continuous and discrete rotational potential symmetries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klug, A., Proc. Roy. Soc. A 348, 167 (1994).Google Scholar
2. Oosawa, F. and Asakura, S., Thermodynamics of the Polymerization of Protein (Academic Press, New York, 1975).Google Scholar
3. Caspar, D. L. D. and Klug, A., Cold Spring Harbor Symp. Quant. Biol. 27, 1 (1962);Google Scholar
See also: Caspar, D. L. D., Biophys. J. 32, 103 (1980);Google Scholar
Makowski, L., Biophys. J. 74, 534 (1998);Google Scholar
Klug, A., Nature 303, 378 (1983);Google Scholar
Johnson, J. J. and Spier, J. A., J. Mol. Biol. 269, 665 (1997);Google Scholar
Chapman, M. S., Biophys. J. 74, 639 (1998).Google Scholar
4. Philp, D. and Stoddart, J. F., Angew. Chem.-Int. Edit. Engl. 35, 1155 (1996).Google Scholar
5. Moore, J. S., Current Opinion Coll. Int. Sci. 4, 108 (1999).Google Scholar
6. Lehn, J. M., Supramolecular Chemistry (VCH, Weinheim, 1995).Google Scholar
7. Alivisatos, A. P., Johnsson, K. P., Peng, X. G., Wilson, T. E., Loweth, C. J., Bruchez, M. P. and Schultz, P. G., Nature 382, 609 (1996).Google Scholar
8. Jeneke, S. A. and Chen, X. L., Science 283, 372 (1999).Google Scholar
9. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. and Sijbesma, R. P., Chem. Rev. 101, 4071 (2001).Google Scholar
10. de Gans, B. J., Wiegand, S., Zubarev, E. R., and Stupp, S. I.., J. Phys. Chem. B 106, 9730 (2002).Google Scholar
11. Stupp, S. I., Son, S., Lin, H. C., and Li, L. S., Science 259, 59 (1993);Google Scholar
Stupp, S. I., LeBonheur, V., Walker, K., Li, L. S., Huggins, K. E., Keser, M., and Amstutz, A., Science 276, 384 (1997).Google Scholar
12. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J., Nature 382, 607 (1996).Google Scholar
13. Schnur, J., Science 262, 1669 (1993).Google Scholar
14. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. and Khazanovich, N., Nature 366, 324 (1993).Google Scholar
See also: Furhop, J. -H. and Helfrisch, W., Chem. Rev. 93, 1565 (1993).Google Scholar
15. Lawrence, D.S., Jiang, T., Levelt, M., Chem. Rev. 95, 2229 (1995).Google Scholar
16. Crick, F. H. C. and Watson, J. D., Nature 177, 473 (1956).Google Scholar
17. Finch, J. T. and Klug, A., Nature 183, 1709 (1959);Google Scholar
See also: Bancroft, J. B., Advances in Virus Research (Academic, New York, 1970);Google Scholar
Rossmann, M. G. and Johnson, J. E., Ann. Rev. Biochem. 58, 533 (1989).Google Scholar
18. Van Workum, K. and Douglas, J. F., Phys. Rev. E 71, 031502 (2004);Google Scholar
Staumbaugh, J., Van Workum, K. and Douglas, J. F. and Losert, W., Phys. Rev. E 72, 031301 (2005).Google Scholar
19. Shelley, J. C., Patey, G. N., Levesque, D., and Weis, J. J., Phys. Rev. E 59, 3065 (1999).Google Scholar
20. Chen, B. and Siepmann, J. I., J. Phys. Chem. B 105, 11275 (2001).Google Scholar
21. Dudowicz, J., Freed, K. F., and Douglas, J. F., J. Chem. Phys. 112, 1002 (2000);Google Scholar
J. Chem. Phys 113, 434 (2000);Google Scholar
J. Chem. Phys. 119, 12645 (2003).Google Scholar
22. Staumbaugh, J., PhD Thesis, University of Maryland (College Park), 2004. The raw data from which the dipole moments were calculated was obtained from the protein databank.Google Scholar
23. Van Workum, K. and Douglas, J. F., Mackromol. Symp. 227, 1 (2005); Phys. Rev. E (submitted).Google Scholar
24. Wolde, P. R. ten, Oxtoby, D. W. and Frenkel, D., Phys. Rev. Lett. 81, 3695 (1988).Google Scholar
25. Dijkstra, M., Hansen, J. P., and Madden, P. A., Phys. Rev. Lett. 75, 2236 (1995);Google Scholar
Phys. Rev. E 55, 3044 (1997).Google Scholar
26. Cao, Z. and Ferrone, F. A., Biophys. J. 72, 343 (1997);Google Scholar
King, J. and Casjens, S., Nature 251, 112 (1974);Google Scholar
Klug, A., Angew. Chem: Int. Edn. 22, 565 (1983).Google Scholar
27. Fygenson, D. K., Braun, E. and Libchaber, A., Phys. Rev. E 50, 1579 (1994);Google Scholar
Flyvbjerg, H., Holy, T. E. and Leibler, S., Phys. Rev. E 54, 5538 (1996).Google Scholar
28. Holy, T. E., Dogterom, M., Yurke, B. amd Leibler, S., Proc. Nat. Acad. Sci. 94, 6228 (1997);Google Scholar
Nédélec, F. J. et al. , Nature, 389, 305 (1997);Google Scholar
Rodionov, V., Nadezhdina, E., Borisy, G., Proc. Nat. Acad. Sci. 96, 115 (1999).Google Scholar
29. Watts, N. R. et al. , J. Cell Biology 150, 349 (2000).Google Scholar