Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-08T05:26:40.398Z Has data issue: false hasContentIssue false

Light Trapping in Thin Film Silicon n-i-p Solar Cells - Gains and Losses

Published online by Cambridge University Press:  01 February 2011

Ruud E.I. Schropp
Affiliation:
r.e.i.schropp@uu.nl, Utrecht University, Faculty of Science, Debye Institute of Nanomaterials Science, SID - Physics of Devices, P.O. Box 80.000, Utrecht, 3508 TA, Netherlands, +31302533170, +31302543165
Hongbo Li
Affiliation:
h.li@uu.nl, Utrecht University, Faculty of Science, Debye Institute of Nanomaterials Science, Nanophotonics - Physics of Devices, P.O. Box 80.000, Utrecht, 3508 TA, Netherlands
Jatin K. Rath
Affiliation:
j.k.rath@uu.nl, Utrecht University, Faculty of Science, Debye Institute of Nanomaterials Science, Nanophotonics - Physics of Devices, P.O. Box 80.000, Utrecht, 3508 TA, Netherlands
Ronald H. Franken
Affiliation:
ronald.franken@om-t.net, Utrecht University, Faculty of Science, Debye Institute of Nanomaterials Science, Nanophotonics - Physics of Devices, P.O. Box 80.000, Utrecht, 3508 TA, Netherlands
Get access

Abstract

Thin film silicon solar cell technology frequently makes use of rough or textured surfaces in order to enhance light absorption within the thin absorber layers by scattering and total internal reflection (“light trapping”). The rough morphology of the optically functional internal surfaces both in superstrate and substrate cells however, not only has a beneficial effect on light scattering properties, but on the other hand may also have deleterious effects on the microscopic structure of the deposited layers, in particular if these layers are nanocrystalline. The narrow valleys in the surface morphology may lead to structural defects, such as cavities and pinholes. By adjusting the morphology, these defects can be avoided.

However, even when structural defects in layers directly deposited on rough interfaces are avoided, the obtained optically defined maximum current density is still much lower than expected. For instance, in n-i-p structures the rough interface (the textured back reflector consisting of nanostructured Ag coated with ZnO) is located at the back of the cell, where only long wavelength light is present. The natively textured Ag film is sputtered at elevated temperature and optimized for diffusely reflecting this long wavelength light. From experiments we infer that the nanostructured metallic surface also gives rise to plasmon absorption in the red and near IR, and that this leads to a parasitic absorption, i.e. at least part of the absorbed energy is not re-emitted to the active layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schropp, R.E.I. Li, H. Franken, R.H.J. Rath, J.K., Werf, C.H.M. van der, Schüttauf, J.A., and Stolk, R.L., Mater. Res. Soc. Symp. Proc. 989 (2007) 0989–A15.Google Scholar
2 Schropp, R.E.I. Veen, M.K. van, Werf, C.H.M. van der, Williamson, D.L, Mahan, A.H., Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris (France), June 2004, p. 1526.Google Scholar
3 Strengers, J.J.H. Rubinelli, F.A., Rath, J.K., Schropp, R.E.I. Thin Solid Films 501 (2006) 291 Google Scholar
4 Veen, M.K. van and Schropp, R.E.I. Appl. Phys. Lett. 82 (2003) 287.Google Scholar
5 Stolk, R.L., Li, H. Franken, R.H. Strengers, J.J.H. Werf, C.H.M. van der, Rath, J.K., Schropp, R.E.I. J. Non-Cryst. Solids 352 (2006) 1933.Google Scholar
6 Yan, B. Yue, G. Owens, J.M., Yang, J. Guha, S. 4th WCPEC, May 2006, Waikoloa Village, Hawaii (USA).Google Scholar
7 Gordijn, A. Zambrano, R. Jimenez, Rath, J.K., Schropp, R.E.I. IEEE Trans. Elec. Dev. 49 (2002) 949.Google Scholar
8 Stolk, R.L., Strengers, J.J.H. Li, H. Franken, R.H., Werf, C.H.M. van der, Rath, J.K., Schropp, R.E.I. Proc. 20th PVSEC, June 2005, Barcelona (Spain), p. 1655.Google Scholar
9 Li, H. Stolk, R.L., Werf, C.H.M. van der, Franken, R.H., Rath, J.K., Schropp, R.E.I. J. Non-Cryst. Solids 352 (2006) 1941.Google Scholar
10 Gordijn, A.. Zambrano, R.J., Rath, J.K., Schropp, R.E.I. IEEE Transactions on Electron Devices 49 (2002) 949.10.1109/16.998611Google Scholar
11 Veen, M.K. van, Tandem Solar Cells Deposited Using Hot Wire Chemical Vapor Deposition, Ph.D. thesis, Utrecht University, the Netherlands, 2003.Google Scholar
12 Li, H. Stolk, R.L., Werf, C.H.M. van der, Franken, R.H., Rath, J.K., Schropp, R.E.I. J. Non-Cryst. Solids 352 (2006), 19411944 Google Scholar
13 Zambrano, R. Jimenez, Rath, J.K., Schropp, R.E.I. J. Non-Cryst. Solids 299-302 (2002) 113111351.Google Scholar
14 Franken, R.H., Stolk, R.L., Li, H. Werf, C.H.M. van der, Rath, J.K., Schropp, R.E.I. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden (Germany), September 2006, p. 1565.Google Scholar
15 Franken, R.H., Stolk, R.L., Li, H. Werf, C.H.M. van der, Rath, J.K., Schropp, R.E.I. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden (Germany), September 2006, p. 1744.Google Scholar
16 Fischer, D. Dubail, S. Selvan, J. A. Anna, Vaucher, N. Pellaton, Platz, R. Hof, Ch., Kroll, U. Meier, J. Torres, P. Keppner, H. Wyrsch, N. Goetz, M. Shah, A. and Ufert, K.-D., Proc. of the 25th IEEE PVSC, Washington D. C., USA IEEE, New York, 1996, p1053.Google Scholar
17 Xu, Y. Mahan, A.H., Gedvillas, L.M., Reedy, R.C., Branz, H. Thin Solid Films 501 (2006) 198.Google Scholar
18 Buehlmann, P. Bailat, J. Dominé, D., Billet, A. Meillaud, F. Feltrin, A. and Ballif, C. Appl. Phys. Lett. 91 (2007) 143505.Google Scholar
19 Franken, R.H., Stolk, R.L., Li, H. Werf, C.H.M. van der, Rath, J.K., Schropp, R.E.I. J. Appl. Phys. 102 (2007) 014503.Google Scholar
20 Aizin, G. R. Horing, N. J. M. Mourokh, L. G. and Kovalev, V. M. J. Appl. Phys. 96 (2004) 4225.Google Scholar
21 Barman, S.R., Biswas, C. Horn, K. Surf. Sci. 566-569 (2004) p538.Google Scholar
22 Collins, R.W., Sainju, D. Dahal, L.R., Li, J. Stoke, J.A., Pordraza, N.J., Deng, X. this symposium, this conference.Google Scholar
23 Li, H. Franken, R.H., Stolk, R.L, Rath, J.K., Schropp, R.E.I. Solid State Phenomena Vols. 131-133 (2008) 27.Google Scholar
24 Franken, R. H. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells, Ph.D. thesis, Utrecht University, the Netherlands, 2006.Google Scholar
25 Li, Hongbo, Single and multijunction silicon based thin film solar cells on flexible substrates with absorber layers made by hot-wire CVD, Ph.D. Thesis, Utrecht University, the Netherlands, 2007.Google Scholar