Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T23:37:22.534Z Has data issue: false hasContentIssue false

Light-Matter Interaction of Strong Laser Pulses in the Micro-, Nano-, and Pico-second Regimes

Published online by Cambridge University Press:  01 February 2011

Hans Agren
Affiliation:
agren@theochem.kth.se, Royal Institute of Technology, Theoretical Chemistry, SE-100, Stockholm, 44, Sweden
Pontus Welinder
Affiliation:
agren@theochem.kth.se, Linköping University, Department of Physics, Chemistry and Biology, SE-581, Linköping, 83, Sweden
Robert Erlandsson
Affiliation:
agren@theochem.kth.se, Linköping University, Department of Physics, Chemistry and Biology, SE-581, Linköping, 83, Sweden
Johan Henriksson
Affiliation:
agren@theochem.kth.se, Linköping University, Department of Physics, Chemistry and Biology, SE-581, Linköping, 83, Sweden
Patrick Norman
Affiliation:
agren@theochem.kth.se, Linköping University, Department of Physics, Chemistry and Biology, SE-581, Linköping, 83, Sweden
Hans Ågren
Affiliation:
agren@theochem.kth.se, Royal Institute of Technology, Theoretical Chemistry, SE-100, Stockholm, 44, Sweden
Get access

Abstract

Light propagation in a medium is sensitively dependent on the shape and intensity of the optical pulse as well as on the electronic and vibrational structure of the basic molecular units. We review in this paper results of systematic studies of this problem for isotropic media. Our theoretical approach|the quantum mechanical{electrodynamical (QMED) approach is based on a quantum mechanical account of the many-level electron-nuclear medium coupled to a numerical solution of the density matrix and Maxwell's equations. This allows to accommodate a variety of nonlinear e ects which accomplish the propagation of strong light pulses. Particular attention is paid to the understanding of the role of coherent and sequential excitations of electron-nuclear degrees of freedom. The QMED combination of quantum chemistry with classical pulse propagation allows to estimate the optical transmission from cross sections of multi-photon absorption processes and from considerations of propagation e ects, saturation and pulse e ects. Results of the theory suggest that in the nonlinear regime it is often necessary to account simultaneously for coherent one-step and incoherent step-wise multi-photon absorption, as well as for o -resonant excitations even when resonance conditions prevail. The dynamic theory of nonlinear propagation of a few interacting intense light pulses is here highlighted in a study of the optical power limiting with platinum-organic molecular compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McKay, T. J., Bolger, J. A., Staromlynska, J., and Davy, J. R., J. Chem. Phys. 118, 5537 (1998).Google Scholar
2 Parker, C. A., Photoluminescence of solutions (Elsevier, 1968).Google Scholar
3 Cooper, T. M., McLean, D. G., and Rogers, J. E., Chem. Phys. Lett. 349, 31 (2001).Google Scholar
4 Norman, P., Cronstrand, P., and Ericsson, J., Chem. Phys. 285, 207 (2002).Google Scholar
5 Rogers, J. E., Cooper, T. M., Fleitz, P. A., Glass, D. J., and McLean, D. G., J. Phys. Chem. A 106, 10108 (2002).Google Scholar
6 Rogers, J. E., Nguyen, K. A., Hufnagle, D. C., McLean, D. G., Su, W., Gossett, K. M., Burke, A. R., Vinogradov, S. A., Pachter, R., and Fleitz, P. A., J. Phys. Chem. A 107, 11331 (2003).Google Scholar
7 Rogers, J. E., Slagle, J. E., McLean, D. G., Sutherland, R. L., Sankaran, B., Kannan, R., Tan, L.-S., and Fleitz, P. A., J. Phys. Chem. A 108, 5514 (2004).Google Scholar
8 Baev, A., Gel'mukhanov, F., Macak, P., Agren, H., and Luo, Y., J. Chem. Phys. 117, 6214 (2002).Google Scholar
9 Baev, A., Gel'mukhanov, F., Kimberg, V., and Agren, H., J. Phys. B: At. Mol. Opt. Phys. 36, 3761 (2003).Google Scholar
10 Jackson, J. D., Classical Electrodynamics (Wiley, New York, 1999), 3rd ed. Google Scholar
11 Boyd, R. W., Nonlinear Optics (Academic Press, Inc., San Diego, 1992).Google Scholar
12 Gel'mukhanov, F., Baev, A., Macak, P., Luo, Y., and Agren, H., J. Opt. Soc. Am. B 19, 937 (2002).Google Scholar
13 Becke, A. D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
14 Bergner, A., Dolg, M., Kuchle, W., Stoll, H., and Preuss, H., Mol. Phys. 80, 1431 (1993).Google Scholar
15 Andrae, D., Haussermann, U., Dolg, M., Stoll, H., and Preuss, H., Theor. Chim. Acta 77, 123 (1990).Google Scholar
16 Hehre, W. J., Ditchfield, R., and Pople, J. A., J. Chem. Phys. 56, 2257 (1972).Google Scholar
17 Yanai, T., Tew, D. P., and Handy, N. C., Chem. Phys. Lett. 393, 51 (2004).Google Scholar
18 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr, Stratmann, R. E., Burant, J. C. et al. , Gaussian 98 (1998), Gaussian Inc., Pittsburgh PA, 1998. See http://www.gaussian.com.Google Scholar
19DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html.Google Scholar
20 Peach, M. J. G., Helgaker, T., Salek, P., Keal, T. W., Lutnæs, O. B., Tozer, D. J., and Handy, N. C., Phys. Chem. Chem. Phys. 8, 558 (2006).Google Scholar
21 Paterson, M. J., Christiansen, O., Pawlowski, F., JÕrgensen, P., Hattig, C., Helgaker, T., and Salek, P., J. Chem. Phys. 124, 054322 (2006).Google Scholar
22 Lopes, C., private communication.Google Scholar
23 Norman, P. and Ruud, K., in Nonlinear optical properties of matter: From molecules to condensed phases, edited by Papadopoulos, M., Leszczynski, J., and Sadlej, A. J. (Kluwer Academic Press, 2006).Google Scholar