Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-18T22:21:10.719Z Has data issue: false hasContentIssue false

Low Cost Filled Thermostable Ionomer Membrane for P.E.M.F.C.

Published online by Cambridge University Press:  10 February 2011

C. Poinsignon
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, UMR 5631 ENSEEG, B.P.75 F-38402 Saint Martin d'Hères Cédex, FRANCE. Poinsign@inpg.fr
I. Amodio
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, UMR 5631 ENSEEG, B.P.75 F-38402 Saint Martin d'Hères Cédex, FRANCE
D. Foscallo
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, UMR 5631 ENSEEG, B.P.75 F-38402 Saint Martin d'Hères Cédex, FRANCE
J.Y. Sanchez
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, UMR 5631 ENSEEG, B.P.75 F-38402 Saint Martin d'Hères Cédex, FRANCE
Get access

Abstract

A filled ionomeric membrane was achieved by dispersing phosphatoantimonic acid H3Sb3P2014, ×H20 (H3) in a Sulfonated PolySulfone (SPS) solution [1]. Water up-take is higher for filled than unfilled membrane as well as Protonic conductivity which is larger than that expected from the overall calculated concentration in charge carriers : a conductivity value of 0.135 S.cm−1 was gained at 50°C under 1003% Relative Humidity (HR) for a 1.6 meq.g−1 cationic exchange capacity (cec) SPS filled with 8% in H3 against 0.06S.cm−1 for an unfilled one. Mechanical measurements on the wet membrane shows the plasticizing effect of sulfonation, water and of the filler content which simultanously reinforced the cohesion of the membrane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baradie, B., Poinsignon, C., Sanchez, J.Y., Piffard, Y., Foscallo, D., Vitter, G., Bestaoui, N., Delabouglise, D., Denoyelle, A., Vaujany, M. J. Power Sources 74 8 (1998). – C. Poinsignon, J.Y. Sanchez, Y. Piffard, G. Vitter, B. Baradie, A. Denoyelle European Patent 97.401613 (1997).Google Scholar
2. Kordesch, K.V. and Simander, G.R., Chem. Revue 95–1 191 (1995)Google Scholar
3. Wilkinson, D.P. and Steck, A.E. p27 New materials forfuel cell and modern battery systems II Proc. Secund Internat. Symp. Montreal (Quebec) Savadogo, Canada O., Roberge, P.R. Ed (1997).Google Scholar
4. Yeo, R.S., Yeager, H.L. Modern aspects of Electrochemistry 16 437 (1985).Google Scholar
5. Poinsignon, C. Solid State Ionics 35 107 (1989).Google Scholar
6. Rieke, P.C., Vanderborgh, N.E. J. Polymer Sci. 32 313 (1987).Google Scholar
7. Steck, A. E., p.74. New Materials For Fuel Cell Systems I, Proc. First Internat Symp., Montréal (Québec) Canada, Savadogo, D., Roberge, P.R., Veziroglu, T.N. Ed. (1995).Google Scholar
8. Proton Conducting Membrane Fuel Cells I, edited by Gottesfeld, S., Halpert, G. & Landgrebe, A., Electrochem. Soc. Proceed. 23 193 (1995).Google Scholar
9. Noshay, A.. Robeson, L. M., J. Appl. Polym.Science, 20 1885 (1976).Google Scholar
10. Piffard, Y., Verbaere, A., Lachgar, A., Deniard, S.C., Tournoux, M., Rev.Chim.mingrale, 23 766 (1986).Google Scholar
11. Deniard-Courant, S., Piffard, Y., Barboux, P. & Livage, J., S.olid State lonics, 27 189 (1988).Google Scholar
12. Gupta, B. & Scherer, G. G., J. Appl. Polym. Science, 50 2129 (1993).Google Scholar
13. Gupta, B., Highfield, J. G. & Scherer, G. G., J. Appl. Polym. Science, 51 1659 (1994).Google Scholar
14. Rose, J. B., Polymer, 15 456 (1974).Google Scholar