Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T02:20:03.023Z Has data issue: false hasContentIssue false

Magnetic Microstructure of Thin Films and Surfaces: Exploiting Spin-Polarized Electrons in the SEM and STM

Published online by Cambridge University Press:  03 September 2012

D. T. Pierce
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD. 20899
M. R. Scheinfein
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD. 20899
J. Unguris
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD. 20899
R. J. Celotta
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD. 20899
Get access

Abstract

Magnetic microstructure, that is the configuration of domains and domain walls in a magnetic material, is of both fundamental interest and of crucial importance for device applications. For example, the ultimate density of magnetic information storage is limited by the sharpness of a domain boundary. The magnetic microstructure of a thin film or surface depends sensitively on its physical structure which is strongly affected by sample preparation or growth. High resolution magnetization imaging is necessary to determine the domain configuration that occurs for a particular sample preparation and the changes that take place under external perturbations such as applied magnetic field, stress or temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hembree, G.G., Unguris, J., Celotta, R.J., and Pierce, D.T. Scanning Microscopy Supplement 1, 229 (1987).Google Scholar
[2] Koike, K., Matsuyama, H., Todokoro, H., Hayakawa, K., Scanning Microscopy Supplement 1, 241 (1987).Google Scholar
[3] Lo, D.S., Cosimini, G.H., Zierhut, L.G., Dean, R.H., and Paul, M.C., IEEE Trans. Magnetics MAC–21, 1776 (1985).Google Scholar
[4] Yafet, Y. and Gyorgy, E.M., Phys. Rev. B38, 9145 (1988).Google Scholar
[5] Robins, J.L., Celotta, R.J., Unguris, J., and Pierce, D.T., Appl. Phys. Lett. 52, 1918 (1988)CrossRefGoogle Scholar
[6] Hubert, A., IEEE Trans. Magnetics, MAG–11, 1285 (1975).CrossRefGoogle Scholar
[7] Scheinfein, M.R., Unguris, J., Celotta, R.J., and Pierce, D.T., to be published.Google Scholar
[8] Pierce, D.T., Phys. Scr. 38, 291 (1988).Google Scholar
[9] Young, R., Ward, J., and Scire, F., Rev. Sci. Instrum. 43, 999 (1972).Google Scholar
[10] Unguris, J., Pierce, D.T., and Celotta, R. J., Phys. Rev. B29, 1381 (1984).Google Scholar
[11] Hopster, H., Raue, R., and Clauberg, R., Phys. Rev. Lett. 51, 695 (1984).CrossRefGoogle Scholar
[12] Allenspach, R. and Bischof, A., Appl. Phys. Lett. 54, 587 (1989).Google Scholar
[13] Fink, H.W., Phys. Scr. 38, 260 (1988).Google Scholar
[14] Landolt, M., and Yafet, Y., Phys. Rev. Lett. 40, 1401 (1978).CrossRefGoogle Scholar
[15] Scheinfein, M.R., Unguris, J., Pierce, D.T. and Celotta, R.J. (to be published.)Google Scholar
[16] Hartmann, U., J. Appl. Phys. 64, 1561 (1988).Google Scholar
[17] Pierce, D.T., Celotta, R.J., Wang, G.-C., Unertl, W.N., Galejs, A., Kuyatt, C.E., and Mielczarek, S.R., Rev. Sci. Instrum. 51, 478 (1980).Google Scholar
[18] Feenstra, R.M. and Stroscio, J.A., J.Vac. Sci. Technnol. B5, 923 (1987).Google Scholar