Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T22:18:50.920Z Has data issue: false hasContentIssue false

Mechanisms of Transition Metal Diffusion into Semiconductor Film

Published online by Cambridge University Press:  21 February 2011

M. G. Goldiner
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI 48109
A. V. Vaysleyb
Affiliation:
Department of Materials Science, Henry Krumb School of Mines, Columbia University, New York, 10027
Get access

Abstract

Descriptions of metal (Me) diffusion into semiconductor (Se) film by diffusion-kinetic and purely kinetic methods were compared. To analyze thin film diffusion, thin film surfaces were considered as a substantial source/sink of point defects. Conditions of transition from one Me diffusion transport mechanism/regime to another, when Se sample thickness is changed, were found to be practically the same in both considerations. Critical Se film size, dislocation density, and temperature of diffusion mechanisms and regimes coincide, providing a correct interpretation of the experimental results in terms of the corresponding diffusion mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Antoniadis, D. A., in Process and Device Simulation for MoS-VLSI Circuites, edited by Autognetti, P., Antoniadis, D. A., Dutton, R. W., Oldham, W. G. (Martinus Nijhof, Boston, 1983), Ch. 1.Google Scholar
2. Gdisele, U., Frank, W. and Seeger, A., Appl. Phys. 23, 361 (1980).Google Scholar
3. Kitagawa, H., Hashimoto, K. and Yoshida, M., Jpn. J. Appl. Phys. 21, 276 (1982).Google Scholar
4. Yoshida, M., Jpn. J. Appl.Phys. 8, 1211 (1969).Google Scholar
5. Dash, W. C., J. Appl. Phys. 31, 2275 (1960).Google Scholar
6. Wilcox, W. R. and LaChapelle, T. L., J. Appl. Phys. 35,240 (1964).Google Scholar
7. Seeger, A., Chik, K. P., in Radiation Damage in Semiconductors, edited by Vook, L. (Plenum Press, New York, 1968), p. 53.Google Scholar
8. Seeger, A., Foil, H. and Frank, W., in Radiation Effects in Semiconductors, 1976 (Inst. Phys., Conf. Ser. 31, London, 1977), p. 12.Google Scholar
9. Goldiner, M. G., Soy. Phys.-Solid State 24, 1428 (1982).Google Scholar
10. Huntley, F. A. and Willoughby, A. F. W., Solid State Electron. 13, 1231 (1970).CrossRefGoogle Scholar
11. Lambert, J. L., Phys. Stat. Sol.(a) 44, K33 (1971).Google Scholar
12. Sprokel, G. L., Electrochem. Soc. 112, 807 (1965).Google Scholar
13. Bronner, G. B. and Plummer, J. D., J. Appl. Phys. 61, 5286 (1987).CrossRefGoogle Scholar
14. Morehead, F., Stolwijk, N. A., Meyberg, W. and Gdsele, U., Appl. Phys. Lett. 42, 690 (1983).CrossRefGoogle Scholar
15. Vaisleib, A. V. and Goldiner, M. G., Phys. Lett. A 146,421 (1990).Google Scholar
16. Vaisleib, A. V., Goldiner, M. G., Keloglu, O. Yu. and Kotov, I. N., J. Appl. Phys. 70, 6809 (1991).CrossRefGoogle Scholar
17. Vaisleib, A. V. and Goldiner, M. G., J. Phys. D: Appl. Phys. 24, 1832 (1991).Google Scholar
18. Vaysleyb, A. V. and Goldiner, M. G., to be published.Google Scholar
19. Damask, A. C. and Dienes, G. J., Point Defects in Metals, (Gordon and Breach, New York, 1963), p. 81.Google Scholar
20. Stolwijk, N. A., Holzl, J., Frank, W., Weber, E. R. and Mehrer, H., Appl. Phys. A 39, 37 (1986).Google Scholar
21. Tan, T. Y. and Gosele, U., Appl. Phys. A, 37, 1 (1985).Google Scholar
22. Vaisleib, A. V., J Appl. Phys. Lett. 62, 1012 (1993).Google Scholar