Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T18:24:45.409Z Has data issue: false hasContentIssue false

Micromechanics and Microdynamics Via Atomistic Simulations

Published online by Cambridge University Press:  28 February 2011

Uzi Landman
Affiliation:
School of Physics Georgia Institute of Technology Atlanta, Georgia 30332
W. D. Luedtke
Affiliation:
School of Physics Georgia Institute of Technology Atlanta, Georgia 30332
M. W. Ribarsky
Affiliation:
School of Physics Georgia Institute of Technology Atlanta, Georgia 30332
Get access

Abstract

Basic understanding of the structure and dynamics of materials and their response to external perturbations requires knowledge on the microscopic level, of the underlying energetics and atomic dynamics, whose consequences we observe and measure. Coupled with the above is the everlasting quest to observe and understand natural phenomena on refined microscopic scales, which provides the impetus for the development of experimental and theoretical techniques for the interrogation of materials with refined spatial and temporal resolution. In this paper we review the development of molecular dynamics simulations for studies of the energetics and dynamical response of materials to external mechanical perturbations. Applications to investigations of solid and liquid interfacial systems under stress and to studies of the consequences of tip-substrate interactions in atomic force microscopy are demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See review on “Continuum Modeling” by Davison, L. in Mat. Res. Soc. Bull. 8, 14 (1988); see also “Approaches to Modeling of Friction and Wear”, Eds. F. F. Ling and C. H. T. Pass, (Springer, Berlin, 1988).Google Scholar
2. Israelachvili, J. N., Acc. Chem. Res. 20, 415 (1987); Proc. Natl. Acad. Sci. U.S.A. 84, 4722 (1987).CrossRefGoogle Scholar
3. Israelachvili, J. N., McGuiggan, P. M. and Homola, A. M., Science 240, 189 (1988).Google Scholar
4. Binnig, G., Rohrer, H., Gerber, Ch. and Weibel, E., Phys. Rev. Lett. 50, 120 (1983); G. Binnig and H. Rohrer, IBM J. Res. Develop. 30, 355 (1986).Google Scholar
5. Binnig, B., Quate, C. F. and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
6. Hansma, P. K. and Tersoff, J., J. Appl. Phys. 61, R1 (1986).Google Scholar
7. Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S., Phys. Rev. Lett. 59, 1942 (1987).Google Scholar
8. Soler, J. M., Baro, A. M., Garcia, N. and Rohrer, H., Phys. Rev. Lett. 57, 444 (1986); see comment by J. B. Pethica, ibid. 57, 3235 (1986).CrossRefGoogle Scholar
9. Gimzewski, J. M. and Holler, R., Phys. Rev. B36, 1284 (1987).Google Scholar
10. See articles in Molecular Dynamics Simulations of Statistical-Mechanical Systems, Fermi School, XCVII, Corso, Varenna, 1985, eds. Ciccotti, G. and Hoover, W. G. (Soc. Ital. di Fisica, Bologna, 1986).Google Scholar
11. Landman, U. et al. , Mat. Res. Soc. Symp. Proc. Vol. 63 (MRS, Boston, 1985), p. 273.Google Scholar
12. Abraham, F. F., Adv. Phys. 35, 1 (1986); J. Vac. Sci. Technol. B2, 534 (1984).Google Scholar
13. MRS Bull. Volume XIII (2), February 1988, p. 1439.Google Scholar
14. Landman, U., Barnett, R. N., Cleveland, C. L., Luo, J., Scharf, D. and Jortner, J., in Few-Body Systems and Multiparticle Dynamics, Ed. Micha, D. A., AIP Conf. Proc. 162 (AIP, New York, 1987), p. 200.Google Scholar
15. Heerman, D. W., Computer Simulation Methods (Springer, Berlin, 1986).Google Scholar
16. Computer Simulations of Solids, Eds. Catlow, C. R. A. and Machord, W. C. (Springer, Berlin, 1982).Google Scholar
17. Landman, U., in: Computer Simulation Studies in Condensed Matter Physics: Recent Developments, Eds., Landau, D. P., Mon, K. K. and Schuttler, H.-B. (Springer, Berlin, 1988).Google Scholar
18. Andersen, H. C., J. Chem. Phys. 72, 2384 (1980).Google Scholar
19. Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).Google Scholar
20. Ray, J. R. and Rahman, A., J. Chem. Phys. 80, 4423 (1984).Google Scholar
21. For an extension to metallic systems see Barnett, R. N., Cleveland, C. L. and Landman, U., Phys. Rev. Lett. 54, 1679 (1985); ibid. Phys. Rev. Lett. 55, 2035 (1985).Google Scholar
22. Hoover, W. G., Phys. Rev. A118, 111 (1983).Google Scholar
23. See reviews by Yip, S. and Parrinello, M. in ref. 10.Google Scholar
24. Ribarsky, M. W. and Landman, U., Phys. Rev. B 38, 9522 (1988).CrossRefGoogle Scholar
25. See recent reviews by Evans, D. J. and Morriss, G. P., Comput. Phys. Rep. 1, 297 (1984), and D. J. Evans and W. G. Hoover, Ann. Rev. Fluid Mech. 18, 243 (1986).Google Scholar
26. Ribarsky, M. W. and Landman, U. in Approaches to Modeling of Friction and Wear, Eds. Ling, F. F. and Pan, C. H. T., (Springer-Verlag, New York, 1988), p. 159.Google Scholar
27. Sutton, S., Ribarsky, M. W. and Landman, U., “HMD Simulations of Shear Flow”, J. Chem. Phys. (1988).Google Scholar
28. Cleveland, C. L., “New Equations of Motion for Molecular Dynamics Systems that Change Shape”, J. Chem. Phys. (1988).CrossRefGoogle Scholar
29. Dienes, G. J. and Paskin, A., in Atomistic of Fracture, Eds. Latanison, R. M. and Pickens, J. R. (Plenum, New York, 1983), p. 671; A. Paskin K. Sieradzki, D. K. Som and G. J. Dienes, Acta Metall. 31, 1253 (1983).Google Scholar
30. DeCelis, B., Argon, A. S. and Yip, S., J. Appl. Phys. 54, 4864 (1983) and references therein.CrossRefGoogle Scholar
31. Ashurst, W. T. and Hoover, W. G., Phys. Rev. B14, 1465 (1976).Google Scholar
32. Hoover, W. G., Hoover, N. E. and Moss, W. C., J. Appl. Phys. 50, 829 (1979); see also A. J. C. Ladd and W. G. Hoover, Phys. Rev. B26, 5469 (1982).Google Scholar
33. Gehlan, P. C., Hahn, G. T. and Kanninen, M. F., Scr. Metall. 6, 1087 (1972).CrossRefGoogle Scholar
34. See review by Baskas, M. I. and Daw, M. S. in Computer Simulations in Materials Science, Eds. Arsenault, R. J., Beeler, J. and Esterling, D. M. (Am. Soc. Mets., 1988).Google Scholar
35. Najafabadi, R. and Yip, S., Scr. Metall. 17, 1199 (1983).Google Scholar
36. Ray, J. R. and Rahman, A., J. Chem. Phys. 82, 4243 (1985).Google Scholar
37. Moran, B., Ladd, A. J. C. and Hoover, W. G., Phys. Rev. B28, 1756 (1983).Google Scholar
38. Holian, B. L., Phys. Rev. A37, 2562 (1988).Google Scholar
39. Kluge, M. D., Ray, J. R. and Rahman, A., J. Chem. Phys. 85, 4028 (1986); M. D. Kluge and J. R. Ray, Phys. Rev. B 37, 4132 (1988).Google Scholar
40. This interface orientation was chosen in view of our previous studies of the [001] interface (see ref. 26), where it was found that slip occurs for the Lennard-Jones fcc system along the (111) planes. Note that the values for external stress given in ref. 26, should be interpreted as those for the thermodynamic tension (see Section II).Google Scholar
41. If the interaction parameters are chosen such that they correspond to the cohesive energy and lattice constant of nickel (e = 3.54x10-13erg, σ = 2.49 å, and atomic mass m = 9.75x10-23 g) a reduced temperature T = 0.11 corresponds to 300 °K, the reduced melting temperature Tm = 0.7 corresponding to 2000 °K, the reduced unit of stress or load to 2.4x107 g/cm2 (or 2.4x1010 dynes/cm2, and the reduced time unit (t.u.) corresponds to 4.1x10-13 sec.Google Scholar
42. Stillinger, F. H. and Weber, T. A., Phys. Rev. B31, 5262 (1985).Google Scholar
43. Landman, U., Luedtke, W. D. and Nitzan, A., Surf. Sci. Lett. (in press). August, 1987).Google Scholar
44. See Landman, U. and Luedtke, W. D. in: Modeling of Materials: Beyond Pair Potentials, Ed. Vitek, V. (Plenum, N. Y., 1989).Google Scholar
45. For other AFM simulations of silicon, see Abraham, F. F., Batra, I. P. and Ciraci, S., see Phys. Rev. Lett. 60, 1314 (1988).Google Scholar
46. Barnes, H. A., Dispersion Rheology, (Roy. Soc. Chem., London, 1980).Google Scholar
47. Heyes, D. M., Hol. Phys. 57, 1265 (1986).Google Scholar
48. For MD results and earlier references about layering of interfacial fluids see Landman, U., Barnett, R. N., Cleveland, C. L. and Rast, R. H., J. Vac. Sci. Technol. A3, 1574 (1985).Google Scholar