Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T09:40:53.778Z Has data issue: false hasContentIssue false

Microsample Testing of Single Crystalline Ti-52 at%Al and Ti-55.5 at%Al

Published online by Cambridge University Press:  10 February 2011

Marc Zupan
Affiliation:
Johns Hopkins University, Dept. of Mechanical Engineering, Baltimore, MD 21218, U.S.A.
D. M. Dimiduk
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433–7817, U.S.A.
K. J. Hemker
Affiliation:
Johns Hopkins University, Dept. of Mechanical Engineering, Baltimore, MD 21218, U.S.A.
Get access

Abstract

Dislocation activity in two-phase commercial TiAl alloys occurs most readily in the γ-TiAl phase, and measurements of the CRSS of single crystalline γ-TiAl provides a solid foundation for understanding the mechanical performance of these alloys. Single crystals of γ-TiAl with greater than 54.5 at%Al have been grown using the optical float zone crystal growing technique, but single crystals with lower Al content, closer to that of commercial alloys, have not. In the present study, polycrystalline ingots of Ti-52 at%Al have been heat treated to form very large grains, and microsample tensile specimens, which have a nominal gage cross-section of 250μm × 300μm, a gage length of 250μm and an overall length of 3 mm, have been machined from within single grains. Microsample high-temperature stress-strain curves for Ti-55.5 at%Al single crystals oriented along the [001] and [010] are presented. Tensile tests results for Ti-52 at%Al tested at 1073K along the [237], [173] and [344] orientations will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamaguchi, I. M., Inui, H., Kishida, K., Matsumuro, M. and Shirai, Y., Gamma Titanium Aluminide Alloys, Materials Research society (1995).Google Scholar
2. Kim, Y.-W. and Dimiduk, D.M., JOM, 40–47 (1991).CrossRefGoogle Scholar
3. Mahapatra, R., Lin, H., Pope, D.P. and Chou, Y.T., Growth and Facet Orientations of Single-Phase TiAl Single Crystals, Materials Research Society (1995).Google Scholar
4. Martin, P., Hardwick, L. D., , A., Synthesis and Processing Techniques, Westbrook, J. H., Fleischer, R. L., Eds., Intermetallic Compounds (John Wiley & Sons Ltd, 1994).Google Scholar
5. Kawabata, T., Kanai, T. and Izumi, O., Acta Metall 33, 13551366 (1985).CrossRefGoogle Scholar
6. Kawabata, T., Abumiya, T., Kanai, T. and Izumi, O., Acta metall mater 38, 11811393 (1990).Google Scholar
7. Kawabata, T., Kanai, T. and Izumi, O., Philosophical Magazine A 70, 4351 (1994).CrossRefGoogle Scholar
8. Kawabata, T., Kanai, T. and Izumi, O., Philosophical Mag. A 63, 12911298 (1991).Google Scholar
9. Li, Z.X. and Whang, S.H., Mater. Sci. Eng. A152, 182188 (1992).CrossRefGoogle Scholar
10. Stucke, M.A., Dimiduk, D.M. and Hazzledine, P.M., The Influence of Prestrain on the Flow Stress Anomaly in TiAl Single Crystals, Materials Research Society (1993).Google Scholar
11. Wang, Z.-M., Li, Z.X. and Whang, S.H., Mater. Sci Eng A192/193, 211216 (1995).CrossRefGoogle Scholar
12. Stucke, M.A., Vasudevan, V.K. and Dimiduk, D.M., Mater. Sci Eng. A192/193, 111119 (1995).Google Scholar
13. Bird, N., Taylor, G. and Sun, Y.Q., Normal and Anomalous Yield Stresses in A TiAl Single Crystal and the Dominating Dislocation Mechanisms, (Mat. Res. Soc. Symp. Proc., 1995).Google Scholar
14. Inui, H., Matsumuro, M., Wu, D.-H. and Yamaguchi, M., Phil Mag A 75, 395423 (1997).CrossRefGoogle Scholar
15. Viguier, B., Hemker, K.J., Bonneville, J., Louchet, F. and Martin, J., Phil Mag A 71, 12951312 (1995).CrossRefGoogle Scholar
16. Mahapatra, R., Girshick, A., Pope, D.P. and Vitek, V., Scripta Metallurgica et Materialia 33, 19211927 (1995).CrossRefGoogle Scholar
17. Sharpe, W.N. Jr, Optical Engineering 21, 483488 (1982).Google Scholar
18. Sharpe, W.N. Jr, “An Interferometric Strain/Displacement Measurement System” 101638 (NASA, 1989).Google Scholar
19. Yuan, B.,, The Johns Hopkins Univ. (1997).Google Scholar
20. LaVan, D.A. and Sharpe, W.N., Jr., Strain Measurement on Miniature Tension Specimens, Society for Experimental Mechanics (1997).Google Scholar
21. Zupan, M. and Hemker, K.J., Metallurgical and Materials Transactions A 29A, 6571 (1998).Google Scholar
22. He, Y., et al., Materials Science and Engineering A 239-240, 157163 (1997).CrossRefGoogle Scholar