Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-29T21:06:52.596Z Has data issue: false hasContentIssue false

MOCVD Growth and Structure of PbTiO3 Thin Films

Published online by Cambridge University Press:  21 February 2011

Y. Gao
Affiliation:
Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801
G. Bai
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
K. L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
H. L. M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

PbTiO3 thin films grown on (001)MgO and (110)MgO by MOCVD have been characterized by x-ray diffraction and transmission electron microscopy. The PbTiO3 films deposited on (001)MgO under the optimum conditions always show a bi-layer structure. The top layer of the films near the free surface is c-axis oriented with the orientation relationship (001)[100]PbTiO3∥(001)[100]MgO. The bottom layer of the films near the substrate is a-axis oriented with (100)[001]PbTiO3∥(001)[100]MgO. 90° domains were observed, but only in the caxis oriented layers. The thickness of the a-axis oriented layers near the substrate decreases with decreasing the cooling rate. PbTiO3 films deposited on (110) MgO, however, are single-layer, epitaxial films with (101)[001]PbTiO3∥(110)[001]MgO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Swartz, S.L. and Wood, V. E., Condensed Matter News 1, 4 (1992).Google Scholar
2. Keijser, M. de, Dormans, G. J. M., Cillessen, J. F. M., Leeuw, D. M. de and Zandbergen, H. W., Appl. Phys. Lett. 58, 2636 (1991).Google Scholar
3. lijima, K., Tomita, Y., Takayama, R. and Ueda, I., J. Appl. Phys. 60,361 (1986).Google Scholar
4. Kwak, B. S., Zhang, K., Boyd, E. P., Erbil, A. and Wilkens, B. J., J. Appl. Phys. 69,767 (1991).Google Scholar
5. Ogawa, T., Senda, A. and Kasanami, T., Jpn. J. Appl. Phys. 30,2145 (1991).Google Scholar
6. Wills, L. A., Wessels, B. W., Richeson, D. S. and Marks, T. J., Appl. Phys. Lett. 60,41 (1991).Google Scholar
7. Sakashita, Y., Ono, T. and Segawa, H., J. of Appl. Phys. 69, 8352 (1991).Google Scholar
8. Gao, Y., Bai, G., Merkle, K. L., Shi, Y., Chang, H. L. M., Shen, Z. and Lam, D. J., J. Mater. Res. 8, 145 (1993).Google Scholar