Hostname: page-component-788cddb947-pt5lt Total loading time: 0 Render date: 2024-10-18T18:49:44.504Z Has data issue: false hasContentIssue false

MOCVD Growth of Ga(Al)N/InGaN/Ga(Al)N-Heterostructures: Influence of the Buffer Layer Al-Concentration and Growth Duration on the In-Incorporation in InGaN

Published online by Cambridge University Press:  21 March 2011

Marco Schowalter
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität (TH) Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany
Brigitte Neubauer
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität (TH) Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany
Andreas Rosenauer
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität (TH) Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany
Dagmar Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität (TH) Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany
Oliver Schön
Affiliation:
AIXTRON AG, Kackertstr.15-17, 52072 Aachen, Germany
Michael Heuken
Affiliation:
AIXTRON AG, Kackertstr.15-17, 52072 Aachen, Germany
Get access

Abstract

Transmission electron microscopy (TEM) has been applied to analyze the thickness and the In-concentration of InGaN layers in GaN/InGaN/GaN- and AlGaN/InGaN/AlGaN-quantum well (QW) structures. Two series of samples were grown by metal organic chemical vapor deposition varying either only the growth duration for the InGaN QW or by changing the Al- concentration in the buffer layers at unaltered InGaN growth conditions. A rising average In- concentration from 6.5 to 15.4 % and a decreasing growth rate are observed with increasing growth duration. The increase of the Al-concentration in the buffer layers from 0 to 36 % strongly affects the In-incorporation during the InGaN growth, which decreases from 17.5 to 2.5 %. All samples are characterized by an inhomogeneous In-distribution containing In-rich agglomerates with a size of only a few nanometers and less pronounced composition fluctuations on a scale of 100 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Off, J., Kniest, A., Vorbeck, C., Scholz, F., Ambacher, O., J. Crystal Growth 195, 286 (1999)Google Scholar
2. Gerthsen, D., Hahn, E., Neubauer, B., Rosenauer, A., Schön, O., Heuken, M., Rizzi, A., phys. stat. sol. (a) 177, 145 (2000)Google Scholar
3. Morikawa, O., Someya, T., Tachibana, K., Ishida, S., Arakawa, Y., Appl. Phys. Lett. 76, 2361 (2000)Google Scholar
4. Ho, I-Hsiu, Stringfellow, G.B., Appl. Phys. Lett. 69, 2701 (1996)Google Scholar
5. Karpov, S. Yu., MRS Internet J. Nitride Semicond. Res. 3, 16 (1998)Google Scholar
6. Teles, L.K., Furthmüller, J., Scolfaro, L.M.R., Leite, J.R., Bechstedt, F., Phys. Rev. B 62, 2475 (2000)Google Scholar
7. Chen, H., Feenstra, R.M., Northrup, J., Zywitz, T., Neugebauer, J., Grewe, D. W., Phys. Rev. Lett. 85, 1902 (2000)Google Scholar
8. Kisielowski, C., Liliental-Weber, Z., Nakamura, S., Jpn. J. Appl. Phys. 36, 6932 (1997)Google Scholar
9. Sala, F. Della, Carlo, A. Di, Lugli, P., Bernardini, F., Fiorentini, V., Scholz, R., Jancu, J.-M., Appl. Phys. Lett. 74, 2002 (1999)Google Scholar