Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T07:22:14.556Z Has data issue: false hasContentIssue false

Mocvd of Polycrystalline and Epitaxial Complex Oxides by Liquid Delivery

Published online by Cambridge University Press:  15 February 2011

J. F. Roeder
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Dr., Danbury, CT 06810
S. M. Bilodeau
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Dr., Danbury, CT 06810
R. J. Carl Jr
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Dr., Danbury, CT 06810
T. H. Baum
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Dr., Danbury, CT 06810
P. C. Van Buskirk
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Dr., Danbury, CT 06810
R. R. Woolcott Jr
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
A. I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

A unique approach to MOCVD of complex oxides enables deposition of a number of materials of technological importance through the use of liquid delivery of metalorganic precursors. Methodologies for control of composition and exploration of. process space are compared for two film systems, one in a relatively mature state of development ((Ba,Sr)Ti03), the other in an early state of development (Ni-ferrite). In both cases, composition was controlled by mixing metalorganic precursors dissolved in solvents using a liquid delivery system. Films with excellent crystalline quality were deposited in both cases. Polycrystalline BST films displayed properties suitable for DRAM applications: charge storage densities > 80 fF/μm2 and leakage current density < 10−8 A/cm2 for films as thin as 15 nm. Growth mechanisms and rates were determined for the single component oxides of the ferrite films. Epitaxial NiFe204 films were deposited on MgO single crystal substrates at 650°C; x-ray rocking curves yielded FWHM values of 0.046°, commensurate with the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fazan, P.C., Integ. Ferroelectrics 4, 247 (1994).Google Scholar
2. Williams, C.M., Chrisey, D.B., Lubitz, P., Grabowski, K.S., and Cotell, C.M., J. Appl. Phys. 75 (3) 1678 (1994).Google Scholar
3. Venske, S., van Dover, R.B., Phillips, J.M., Gyorgy, E.M., Seigrist, T., Chen, C-H., Werder, D., Fleming, R.M., Felder, R.J., Coleman, E., and Opila, R., J. Mater. Res. 11, 1187 (1996).Google Scholar
4. Roeder, J.F., Bilodeau, S.M., Carl, R.C., Gardiner, R.A., and Van Buskirk, P.C., Proc. 9th ISIF, Santa Fe, NM, March 2–5, 1997 (in press).Google Scholar
5. Kirlin, P.S., Binder, R., and Gardiner, R.A., U.S. Patent No. 5 204 314 (Apr. 20, 1993).Google Scholar
6. Gardiner, R.A., Van Buskirk, P.C., and Kirlin, P.S., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S.B., Beach, D.B., Wessels, B.W., and Gokoglu, S. (Mater. Res. Soc. Proc. 335, Pittsburgh, PA, 1994) pp. 221 – 226.Google Scholar
7. Van Buskirk, P.C., Bilodeau, S.M., Roeder, J.F., and Kirlin, P.S., Jap. J. Appl. Phys. 35 (Pt. 1, No. 4B), 2520 (1996).Google Scholar
8. Kirlin, P., Bilodeau, S., and Van Buskirk, P., Integ. Ferroelectrics 7, 307 (1995).Google Scholar
9. Roeder, J.F., Vaartstrra, B.A., Van Buskirk, P.C., and Beratan, H.R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics II. edited by Desu, S.B., Beach, D.B., and Van Buskirk, P.C. (Mater. Res. Soc. Proc. 415, Pittsburgh, PA, 1996) pp. 123 – 128.Google Scholar
10. Studebaker, D.B., Doubinnina, G., Zhang, J., Wang, Y.Y., Dravid, V.P., and Marks, T.J., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics II. edited by Desu, S.B., Beach, D.B., and Van Buskirk, P.C. (Mater. Res. Soc. Proc. 415, Pittsburgh, PA, 1996) pp. 255 – 260.Google Scholar
11. Li, Y.Q., Zhang, J., Pombrik, S., DiMascio, S., Stevens, W., Yan, Y.F., and Ong, N., J. Mat. Res. 10, 2166(1995).Google Scholar
12. DeKeijser, M., Van Veldhoven, P.J., and Dormans, G.J.M., in Ferroelectric Thin Films III. edited by Meyers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Proc. 310, Pittsburgh, PA, 1993) pp. 223 – 234.Google Scholar
13. Shimizu, M. and Shiosaki, T., in Ferroelectric Thin Films IV. edited by Tuttle, B.A., Desu, S.B., Rarnesh, R., and Shiosaki, T. (Mater. Res. Soc. Proc. 361, Pittsburgh, PA, 1995) pp. 295 – 305.Google Scholar
14. Foster, C.M., Csencsits, R., Bai, G.R., Li, Z., Wills, L.A., Hiskes, R., Al-Shareef, H.N., and Dimos, D., Integ. Ferroelectrics 10, 31 (1995).Google Scholar
15. Horikawa, T., Mikami, N., Ito, H., Ohno, Y., Makita, T., and Sato, K., IEICE Trans. Electron., E77–C (3), 385(1994).Google Scholar
16. Streiffer, S.K., Basceri, C., Kingon, A.I., Bilodeau, S., Carl, R., and Van Buskirk, P.C., in Amorphous and Crystalline Insulating Thin Films IV. edited by Cristoloveanu, S., Devine, R., Homma, Y., Kanicki, J., Matsumura, M., and Warren, W. (Mater. Res. Soc. Proc. 446, Pittsburgh, PA, 1997) in press.Google Scholar
17. Van Buskirk, P.C., Stauf, G.T., Gardiner, R., Kirlin, P.S., Bihari, B., Kumar, J., and Gallatin, G. in Ferroelectric Thin Films III. edited by Meyers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Proc. 310, Pittsburgh, PA, 1993) pp. 119124.Google Scholar
18. Chow, A.F., Auciello, O., Poker, D.B., and Kingon, A.I., Integrated Ferroelectrics 11, 395 (1995).Google Scholar
19. Phillips, J.M., van Dover, R.B., Gyorgy, E.M., and Marshall, J.H., in Mechanisms of Thin Film Evolution, edited by Yasilov, S.M., Thompson, C.V., and Eagelsham, D.J. (Mater. Res. Soc. Proc. 317, Pittsburgh, PA, 1994), p. 87.Google Scholar
20. Reynolds, T.G. III and Buchanan, R.C., in Ceramic Materials for Electronics, edited by Buchanan, R.C. (New York, Marcel Dekker, 1991) pp. 207247.Google Scholar