Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-06T18:04:53.589Z Has data issue: false hasContentIssue false

Nanocrystalline BaTiO3 from the Gas-Condensation Process

Published online by Cambridge University Press:  10 February 2011

Shaoping Li
Affiliation:
Materials Science division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439
J. A. Eastman
Affiliation:
Materials Science division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439
L. J. Thompson
Affiliation:
Materials Science division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439
Carl. Bjormander
Affiliation:
Materials Science division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439
C. M. Foster
Affiliation:
Materials Science division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439
Get access

Abstract

Nanocrystalline BaTiO3 can be prepared by the gas condensation method at a temperature as low as 700°C, with an average particle size as small as 18nm. The stoichiometry of nanocrystalline BaTiO3 particles can be controlled precisely and reproducibly. Nanocrystalline BaTiO3 powders, fabricated by a novel e-beam evaporation method, show good sintering behavior with a high density at a temperature as low as 1200°C. These samples exhibit a relatively larger dielectric constant than that of coarse-grained BaTiO3. In addition, a thermal analysis has been also carried out to determinethe lowest temperature for forming nanostructured BaTiO3 from Ba/Ti oxidized clusters at ambient pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Phule, P.P, and Risbud, S.H., J. Mater. Sci. 25, 1169 (1990).Google Scholar
2. Zhong, Zhimin and Gallagher, K., J. Mater. Res. 10(4), 945, (1995).Google Scholar
3. Menashi, J., Reid, R.C. and Wagner, L.P., Barium Titanate Based Dielectric Compositions, U.S. Patent 4,832,939, May 23, (1989).Google Scholar
4. Her, Y-S, Matijevic, E., and Chou, M.C., J.Mater. Res. 10(12), 3106–14 (1995).Google Scholar
5. Li, Shaoping, Eastman, Jeffy A., Thompson, L.T., and Baldo, P.M., Mat. Res. Soc. Symp. Proc. Vol.400, 8388, (1996).Google Scholar
6. Frey, M.H. and Payne, D.A., Phy. Rev. B Vol. 54 (5), 3158 (1996).Google Scholar
7. Lee, B.W. and Auh, K. H., J.Mater. Res. 10(6), 1416(1995).Google Scholar
8. Kinoshita, K. and Yamaji, A., J. Appl. Phys. 47, 371, (1976).Google Scholar
9. Arlt, G., Hennings, D., and deWith, G., J. Appl. Phys. 58, 1619(1985);Google Scholar
Niepce, J.C., Electroceramics 4, Aachen, 29 (1994).Google Scholar
9. Buessem, W.R., Cross, L.E., and Goswami, A.K., J. Am. Ceram. Soc. 49, 36 (1966).Google Scholar
10. Technical Report from Cabot Performance Materials (1995).Google Scholar
11. Schmutzler, H. J., Antony, M. M., and Sandhage, K., J. Am. Ceram. Soc. 77, 721–29 (1994).Google Scholar
12. Nourbashsh, S., Vasilyeva, I., and Carter, J.N., Appl. Phys. Lett. 66(21), 2804–08 (1995).Google Scholar
13. Sonegawa, T., et al., Appl. Phys. Lett. 69(15), 2193 (1996).Google Scholar
14. Kaiser, D.L., et al., Appl. Phys. Lett. 66(21), 2801 (1995);Google Scholar
Wills, L.A.,et al., Appl. Phys. Lett. 60(1) 41(1992);Google Scholar
Kwak, B.S., et al., J. Appl. Phys. 69(2), 767 (1991).Google Scholar
15. Davis, G.M. and Gower, M.C., Appl. Phys. Lett. 55(2), 112 (1989).Google Scholar
16. Mckee, R.A., et al., Appl. Phys. Lett. 59(7), 789 (1991).Google Scholar
17. Iijima, K., et al., Appl. Phys. Lett. 56(6), 527 (1990).Google Scholar
18. Buskirk, P.C.V., et al., J. Mater. Res. 7(3), 542 (1992).Google Scholar