Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-17T02:12:54.791Z Has data issue: false hasContentIssue false

Nanosized Metallic Sn Precipitates in Si, Formed Upon Ion Implantation

Published online by Cambridge University Press:  15 February 2011

T. Barancira
Affiliation:
Institute for Nuclear and Radiation Physics, K.U. Leuven, Celestijnenlaan 200D, 3001, Belgium.
J. De Wachter
Affiliation:
Institute for Nuclear and Radiation Physics, K.U. Leuven, Celestijnenlaan 200D, 3001, Belgium.
K. Milants
Affiliation:
Institute for Nuclear and Radiation Physics, K.U. Leuven, Celestijnenlaan 200D, 3001, Belgium.
J. Verheyden
Affiliation:
Institute for Nuclear and Radiation Physics, K.U. Leuven, Celestijnenlaan 200D, 3001, Belgium.
W. Deweerd
Affiliation:
Institute for Nuclear and Radiation Physics, K.U. Leuven, Celestijnenlaan 200D, 3001, Belgium.
J. Odeurs
Affiliation:
Institute for Nuclear and Radiation Physics, K.U. Leuven, Celestijnenlaan 200D, 3001, Belgium.
H. Pattyn
Affiliation:
Institute for Nuclear and Radiation Physics, K.U. Leuven, Celestijnenlaan 200D, 3001, Belgium.
Get access

Abstract

In this work we firstly established the optimal conditions to preferentially form nanosized β-Sn inclusions from a supersaturated solid solution of Sn in Si, formed by a high dose ion implantation. Afterwards we tried to elucidate the origin of the strongly enhanced recoilless fraction of Sn nuclei inside these precipitates, thereby making a link to the observed shift in isomer shift value. This is tentatively interpreted in terms of a local compression of the inclusion to about 200 kbar.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Trumbore, F. A., Isenberg, C. R. and Porbansky, E. M., J. Phys. Chem. solids, 9, (1958) 60.Google Scholar
[2] Weyer, G., Deutch, B. I., Nylandsted-Larsen, A., Andersen, J. U., Nielsen, H. L., J.Phys. (Paris), Colloq. 35 (C6) (1975) 297.Google Scholar
[3] Weyer, G., Andersen, J. U., Deutch, B. I., Golovchenko, J. A., Nylandsted-Larsen, A., Radiat. eff. 24(1975) 117.Google Scholar
[4] Weyer, G., Nylandsted-Larsen, A, Deutch, B. I., Antoncik, E., Nielsen, H. L., Inst. Phys. Conf. Se. 31(1977)491.Google Scholar
[5] Weyer, G., Damgaard, S., Petersen, J.W., Hyp. Inter. 7 (1980) 449.Google Scholar
[6] Nanver, L. K., Weyer, G., Deutch, B. I., Phys. Stat. Sol. A 61 (1980) K29.Google Scholar
[7] Sherer, E. M., de Souza, J. P., Hasenack, C. M., Baumvol, I. J. R., Semicond. Sci. Technol. 1 (1986)241.Google Scholar
[8] Williamson, D. L. in: Mössbauer Isomer Shifts, eds. Shenoy, G.K. and Wagner, F.E. (North-Holland, Amsterdam, 1978) p. 317.Google Scholar
[9] Kumari, M. and Dass, N., J. Phys.: Condens. Matter 2 (1990) 7891.Google Scholar
[10] Muir, A. H. Jr, jn: Mössbaeur Effect Methodology, Vol. 4, ed. Gruverman, I. J. (Plenum, New York, 1968), p. 75.Google Scholar
[11] Hohenemser, C., Phys. Rev. A 139 (1965) 185.Google Scholar
[12] Gschneider, K. A., Physical Properties and Interrelationships of Metallic and Semimetallic Elements in: Solid State Physics, Vol. 16, eds Seitz, F. and Turnbull, D., (Academic Press, New York, 1964) p. 276.Google Scholar