Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-26T23:35:35.157Z Has data issue: false hasContentIssue false

A New Approach to Design Light Emitting Devices Using Electroactive Dyes

Published online by Cambridge University Press:  11 February 2011

Michael Pan
Affiliation:
Institute for Lasers, Photonics and Biophotonics, Departments of Electrical Engineering and Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260
Amitava Patra
Affiliation:
Institute for Lasers, Photonics and Biophotonics, Departments of Electrical Engineering and Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260
Christopher S. Friend
Affiliation:
Institute for Lasers, Photonics and Biophotonics, Departments of Electrical Engineering and Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260
Tzu-Chau. Lin
Affiliation:
Institute for Lasers, Photonics and Biophotonics, Departments of Electrical Engineering and Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260
Alexander N. Cartwright
Affiliation:
Institute for Lasers, Photonics and Biophotonics, Departments of Electrical Engineering and Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260
Paras. N. Prasad
Affiliation:
Institute for Lasers, Photonics and Biophotonics, Departments of Electrical Engineering and Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260
Ryszard Burzynski
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Road, Amherst, New York 14228
Get access

Abstract

Organic electroluminescence (EL) single layer devices using electroactive dyes incorporated in poly-vinylcarbazole (PVK) were fabricated. The molecular structures of the two-photon dyes are the generic D-π-A;, D-π-D, and A-π-A;, structural motif, composed of a diphenylamine donor (D), a distyrylfluorene π-bridge, and an oxadiazole acceptor (A). A single layer type of EL device of ITO/PVK:DYE/Ca/Al was fabricated. The light emission peak and the threshold of the electroluminescence emission depend on the structure and concentration of the dye. The EL intensity increases with the dye concentration and it was found that as the voltage is increased the brightness increases and reaches a value 498 cd/m2 at an applied voltage of 25 V for the D-π-A; dye. We present a physical explanation of this observed behavior and show that this has significant impact on the design of light emitting devices using these organic dyes.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W. and Vanslyke, S. A., Appl. Phys. Lett., 51, 913 (1987).CrossRefGoogle Scholar
2. Saito, S., Tsutsui, T., Era, M., Takada, N., Adachi, C., Proc. SPIE, 1910, 212 (1993).Google Scholar
3. Baigent, D. R., Greenham, N. C., Gruner, J., Marks, R. N., Friend, R. H., Moratti, S. C., Holmes, A. B., Synth. Met., 67, 3 (1994).CrossRefGoogle Scholar
4. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Bruns, P.L. and Holmes, A. B., Nature (London) 374, 539 (1990).CrossRefGoogle Scholar
5. Braun, D. and Heeger, A. J., Appl. Phys. Lett, 58, 991 (1982).Google Scholar
6. Gebler, D.D., Wang, Y.Z., Blatchford, J.W., Jessen, S.W., Fu, D. K., Swager, T. M. MacDiarmid, A.G. and Epstein, A. J., Appl. Phys. Lett., 70, 1644 (1997).CrossRefGoogle Scholar
7. Sano, T., Fujita, M., Fujii, T., Hamada, Y., Shibata, K. and Kuroki, K., Jpn. J. Appl. Phys. 34, 1883 (1995).Google Scholar
8. Kido, J., Kohda, M., Okuyama, K. and Nagai, K., Appl. Phys. Lett., 61, 761 (1992).CrossRefGoogle Scholar
9. Vestweber, H., Sander, R., Greiner, A., Heitz, W., Mahrt, R. F. and Bassler, H., Synth. Met. 64, 141 (1994).CrossRefGoogle Scholar
10. Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. and Forrest, S. R., Nature, 395, 151 (1998).Google Scholar
11. Kao, K. C., Wang, W. H., Electrical transport in solids, Pergamon Press, Oxford, 1981.Google Scholar
12. Chaung, S.J., Kim, K.S., Lin, T.C., He, G.S., Swiatkiewicz, J. and Prasad, P. N., J. Phys. Chem. B, 103, 1074 (1999).Google Scholar
13. Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals (Oxford University Press, New York, 1982).Google Scholar
14. Pschenitzka, F. and Sturm, J. C., Appl. Phys. Lett., 79, 4354 (2001).Google Scholar
15. Thompson, J., Blyth, R. I. R., Mazzeo, M., Anni, M., Gigli, G. and Cingolani, R., Appl. Phys. Lett., 79, 560 (2001).Google Scholar
16. Chao, C.I. and Chen, S.A., Appl. Phys. Lett., 73, 426 (1998).Google Scholar