Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T06:30:49.886Z Has data issue: false hasContentIssue false

A New Spin Filter: The Magnetic Schottky Diode

Published online by Cambridge University Press:  10 February 2011

A. Filipe
Affiliation:
Laboratoire Central de Recherches, Thomson CSF, Domaine de Corbeville, F-91404 Orsay Cedex, France, schuhl@lcr.thomson.fr
H.-J. Drouhin
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
G. Lampel
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
Y. Lassailly
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
J. Peretti
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
V.I. Safarov
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
A. Schuhl
Affiliation:
Laboratoire Central de Recherches, Thomson CSF, Domaine de Corbeville, F-91404 Orsay Cedex, France, schuhl@lcr.thomson.fr
Get access

Abstract

We observe spin-dependent transmission of hot electrons through the ferromagnetic metallic layer of a Schottky diode. A 25% spin-polarized electron beam is produced in vacuum by a GaAs photocathode under illumination with circularly polarized light. The photoemitted electrons are then injected from the vacuum into the sample: a 3.5 nm-thick Fe layer deposited on a n-doped GaAs substrate. We measure a transmission coefficient of the order of a few 10-4. Using an incident energy above the Fermi level equal to 5 eV, a 5% asymmetry in the transmitted current is observed by changing the spin-polarization of the incident electrons (i.e. the light polarization) and/or reversing the Fe-layer magnetization. This corresponds to a transmission spin-dependence of 20% for a 100% spin-polarized incident beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988)Google Scholar
2. Prins, M. W. J., Abraham, D. L. and van Kempen, H., J. Magn. Magn. Mater. 121, 152 (1993)Google Scholar
3. Jia, Y. Q., Shi, R. C., and Chou, S. Y., IEEE Trans. Magn. 32, 4707 (1996)Google Scholar
4. Alvarado, S. F., Phys. Rev. Lett. 75, 513 (1995)Google Scholar
5. For a recent review, see Prinz, G. A., Vol II, p144 in Ultrathin Magnetic Structures, edited by Heinrich, B. and Bland, J. A. C. (Springer-Verlag, Berlin Heidelberg 1994)Google Scholar
6. Filipe, A., Schuhl, A., and Galtier, P., Appl. Phys. Lett. 70, 129 (1997)Google Scholar
7. Filipe, A., and Schuhl, A., J. Appl. Phys. 81, 4359 (1997)Google Scholar
8. Filipe, A., Drouhin, H.-J., Lampel, G., Lassailly, Y., Nagle, J., Peretti, J., Safarov, V. I., and Schuhl, A., submitted to Phys. Rev. Lett.Google Scholar
9. Drouhin, H.-J., Hermann, C., and Lampel, G., Phys. Rev. B. 31, 3859 and 3872 (1985)Google Scholar
10. Sze, S. M. in Physics of Semiconductor Devices (Wiley-Interscience, New-York, 1969)Google Scholar
11. Siegmann, H. C., J. El. Spectr. and Relat. Phenomena 68, 505 (1994)Google Scholar
12. Schönhense, G. and Siegmann, H. C., Ann. Physik 2, 465 (1993)Google Scholar