Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T08:21:34.571Z Has data issue: false hasContentIssue false

Noncovalent Functionalization of Single Walled Carbon Nanotubes Using Alternate Layer-By-Layer Polyelectrolyte Adsorption for Nanocomposite Fuel Cell Electrodes

Published online by Cambridge University Press:  01 February 2011

R. B. Dhullipudi
Affiliation:
Louisiana Tech University, Institute for Micromanufacturing, P.O. Box 10137 Ruston, LA 71272
T. A. Dobbins
Affiliation:
Louisiana Tech University, Institute for Micromanufacturing, P.O. Box 10137 Ruston, LA 71272
S.R. Adiddela
Affiliation:
Louisiana Tech University, Institute for Micromanufacturing, P.O. Box 10137 Ruston, LA 71272
Z. Zheng
Affiliation:
Louisiana Tech University, Institute for Micromanufacturing, P.O. Box 10137 Ruston, LA 71272
R. A. Gunasekaran
Affiliation:
Louisiana Tech University, Institute for Micromanufacturing, P.O. Box 10137 Ruston, LA 71272
Y. M. Lvov
Affiliation:
Louisiana Tech University, Institute for Micromanufacturing, P.O. Box 10137 Ruston, LA 71272
R. Tittsworth
Affiliation:
Louisiana State University, CAMD, 6980 Jefferson Hwy. Baton Rouge, LA 70806, U.S.A.
Get access

Abstract

Electrodes which are resistant to chemical poisoning by CO, S, and other fuel impurities are needed to replace Pt in proton exchange membrane (PEM) fuel cells. We have designed composite electrodes comprised of single walled carbon nanotubes (CNTs) within a conducting polymer matrix. A method for solubilizing single-walled carbon nanotubes (CNTs) in aqueous media using polyelectrolyte layer-by-layer (LbL) nanoassembly of polystyrene sulfonate (PSS) and polyallylamine (PAH) at the CNT surface is elucidated. Once soluble, the CNTs were assembled onto planar substrates using alternate LbL nanoassembly to form nanocomposite films. These films will later be tested for their potential as alternative anodes in proton exchange membrane fuel cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fernando, K.A., Lin, Y., Sun, Y-P., Langmuir, 20 4777 (2004).Google Scholar
2. Zhu, J., Kim, J., Peng, H., Margrave, J.L., Khabashesku, V.N., Barrera, E.V., Nanoletters, 3 1107 (2003).Google Scholar
3. Lvov, Y., Haas, H., Decher, G., et al., Langmuir 10 4232 (1994).Google Scholar
4. Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T., J. Am. Chem. Soc. 117 6117 (1995);Google Scholar
Ariga, K., Lvov, Y., Kunitake, T., J. Am. Chem. Soc., 119 2224 (1997).Google Scholar
5. Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T., Langmuir 12 3038 (1996);Google Scholar
Lvov, Y., Munge, B., Giraldo, O., Ichinose, I., Suib, S.L., Rusling, J.F., Langmuir, 16 8850 (2000).Google Scholar
6. Schonhoff, M., Current Opinion in Colloid and Interface Science 8 86 (2003).Google Scholar
7. Breit, M., Gao, M., von Plessen, G., Lemmer, U., Feldmann, J., Cundiff, S.T., J. Chem. Phys., 117 3956 (2002).Google Scholar
8. Nützenadel, C., Züttel, A., Chartouni, D., Schlapbach, L, Electrochemical and Solid State Letters 2 30 (1999).Google Scholar
9. Sukhorukov, G.B., Donath, E., Lichtenfeld, H., et al. Coll Surf A 137 253 (1998).Google Scholar
10. Berndt, P., Kurihara, K., Kunitake, T., Langmuir 8 2486 (1992).Google Scholar
11. Doomes, E.E., Floriano, P.N., Tittsworth, R.W., McCarley, R.L., Poliakoff, E.D., J. Phys. Chem. B 107 10193 (2003).Google Scholar