Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T20:28:26.291Z Has data issue: false hasContentIssue false

Nonlinear Optical Techniques for Characterization of Wide Bandgap Semiconductor Electronic Properties: III-nitrides, SiC, and Diamonds

Published online by Cambridge University Press:  16 March 2012

Kęstutis Jarašiūnas
Affiliation:
Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, Vilnius, LT-10222 Lithuania Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601 W. Main Str., Richmond, Virginia 23284 USA
Ramūnas Aleksiejūnas
Affiliation:
Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, Vilnius, LT-10222 Lithuania
Tadas Malinauskas
Affiliation:
Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, Vilnius, LT-10222 Lithuania
Saulius Nargelas
Affiliation:
Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, Vilnius, LT-10222 Lithuania
Patrik Ščajev
Affiliation:
Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, Vilnius, LT-10222 Lithuania
Get access

Abstract

Combining interdisciplinary fields of nonlinear optics, dynamic holography, and photoelectrical phenomena, we developed the optical measurement technologies for monitoring the spatial and temporal non-equilibrium carrier dynamics in wide bandgap semiconductors at wide range of excitations (1015 to 1020 cm-3) and temperatures (10 to 800 K).

We explored advantages of non-resonant optical nonlinearities, based on a short laser pulse induced refractive or absorption index modulation (Δn and Δk) by free excess carriers. This approach, based on a direct correlation between the electrical and optical processes, opened a possibility to analyze dynamics of electrical phenomena in “all-optical” way, i.e. without electrical contacts.

Carrier diffusion and recombination processes have been investigated in various wide band gap materials - differently grown GaN, SiC, and diamonds - and their key electrical parameters determined, as carrier lifetime, diffusion coefficient, diffusion length and their dependences on temperature and injected carrier density. The studies provided deeper insight into nonradiative and radiative recombination processes in GaN crystals, revealed diffusion-driven long nonradiative carrier lifetimes in bulk GaN and SiC, disclosed impact of delocalization in InGaN layers, and suggested a trap-assisted Auger recombination in highly-excited InN. Injection and temperature dependent diffusivity revealed a strong contribution of carrier-carrier scattering in diamond and bandgap renormalization in SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Morkoc, H., Handbook of nitride semiconductor and devices (VILEY-VCH, 2008).Google Scholar
[2] Choyke, W.J., Matsunami, H., Pensl, G., Silicon carbide: recent major advances, (Springer, 2004).Google Scholar
[3] Physics and Applications of CVD diamonds, eds. Koizumi, S., Nebel, C., Nesladek, M., (VILEY-VCH, 2008).Google Scholar
[4] Ščajev, P., Usikov, A., Soukhoveev, V., Aleksiejūnas, R., and Jarašiūnas, K., Appl. Phys. Lett. 98, 202105 (2011).Google Scholar
[5] Malinauskas, T., Jarašiūnas, K., Heuken, M., Scholz, F., and Bruckner, P., Phys. Status Solidi C, 6, S743 (2009).Google Scholar
[6] Ščajev, P., Jarašiūnas, K., Özgür, Ü., and Morkoç, H., Phys. Status Solidi B (in print).Google Scholar
[7] Ščajev, P., Gudelis, V., Jarašiūnas, K., and Klein, P. B., J. Appl. Phys. 108, 023705 (2010)Google Scholar
[8] Ščajev, P., Hasssan, J., Jarašiūnas, K., Kato, M., Henry, A., and Bergman, P., J. Electron. Materials 40, 394399 (2011).Google Scholar
[9] Ščajev, P., Gudelis, V., Ivakin, E., and Jarašiūnas, K., Phys. Status Solidi A, 208, 2067 (2011).Google Scholar
[10] Malinauskas, T., Jarašiūnas, K., Ivakin, E., Tranchan, N., and Nesladek, M., Phys. Status Solidi A, 207, 2058 (2010).Google Scholar
[11] Nargelas, S., Aleksiejūnas, R., Vengris, M., Malinauskas, , Jarašiūnas, K., and Dimakis, E., Appl. Phys. Lett. 95, 162103 (2009).Google Scholar
[12] Jarašiūnas, K., Aleksiejūnas, R., Malinauskas, T., Gudelis, V., Tamulevičius, T., Tamulevičius, S., Guobienė, A., Usikov, A., Dmitriev, V., and Gerritsen, H.J., Rev. Sc. Instrum. 78, 033901 (2007).Google Scholar
[13] Eichler, H. J., Gunter, P., and Pohl, D. W., Light-induced Dynamic Gratings (Springer, Berlin, 1986).Google Scholar
[14] Jarašiūnas, K., Aleksiejūnas, R., Malinauskas, T., Gudelis, V., Sudzius, M, Massdorf, A.. Brummer, F, and Weyers, M, Eur. J. Appl. Physics 27, 181 (2004).Google Scholar
[15] Özgür, Ü., Fu, Y., Moon, Y. T., Yun, F., Morkoç, H., and Everitt, H. O., J. Appl. Phys. 97, 103704 (2005).Google Scholar
[16] Wang, H., Wong, K.S., Foreman, B.A., Yang, Z.Y., and Wong, G.K.L., J.Appl. Phys. 83, 4773 (1998).Google Scholar
[17] Malinauskas, T., Jarašiūnas, K., Miasojedovas, S., Juršėnas, S., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 88, 202109 (2006).Google Scholar
[18] Ščajev, P., Malinauskas, T., Lubys, L., Ivakin, E., Nesladek, M., Haenen, K., and Jarašiūnas, K., Phys. Status Solidi RRL 5, 193 (2011).Google Scholar
[19] Reshchikov, M. A., Morkoc, H., Park, A.S., and Lee, K.Y., Appl. Phys. Lett. 78, 3041 (2001).Google Scholar
[20] Persson, C., Lindefelt, U., and Sernelius, B. E., Solid State Electronics 44, 471 (2000).Google Scholar
[21] Pernot, J., Volpe, P.N., Omnes, F., Muret, P., Mortet, V., Haenen, K., and Teraji, T., Phys. Rev. B 81, 205203 (2010).Google Scholar
[22] Malinauskas, T., Miasojedovas, S., Aleksiejūnas, R., Juršėnas, S., Jarašiūnas, K., Nomura, M., Arakawa, Y., Shimura, T., and Kuroda, K., Phys. Status Solidi C 8, 2381 (2011).Google Scholar