Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T07:39:03.785Z Has data issue: false hasContentIssue false

Nonlinear Optics of Linear Conjugated Polymers

Published online by Cambridge University Press:  25 February 2011

D. Guo
Affiliation:
Dept. of Physics, University of Arizona, Tucson, AZ 85721
S. Mazumdar
Affiliation:
Dept. of Physics, University of Arizona, Tucson, AZ 85721
G. I. Stegeman
Affiliation:
University of Central Florida, Center for Research in Electro-Optics and Lasers, 12424 Research Parkway, Orlando, FL 32826
M. Cha
Affiliation:
University of Central Florida, Center for Research in Electro-Optics and Lasers, 12424 Research Parkway, Orlando, FL 32826
D. Neher
Affiliation:
University of Central Florida, Center for Research in Electro-Optics and Lasers, 12424 Research Parkway, Orlando, FL 32826
S. Aramaki
Affiliation:
Imaging Materials Laboratory, Mitsubishi Kasei Corp., 1000, Kamoshida-Cho, Midori-ku, Yokohama 227, Japan
W. Torruellas
Affiliation:
Raytheon Research Division, 131 Spring Street, Lexington, MA 02173
R. Zanoni
Affiliation:
Center for Laser Research, Oklahoma State University, Stillwater, OK 74078–0533
Get access

Extract

The third order nonlinear optical properties of conjugated polymers have been considered promising since the 1970s when Sauteret et al reported large non-resonant values in PTS.[1] Although it is well-understood that the physical origin of the nonlinearities is due to the delocalization of the π-electrons, the details, and how best to calculate them have been the focus of a continuing theoretical dialogue. Until recently, experimental investigations of nonlinearities have been limited to only a few wavelengths. Now third harmonic generation (THG), which accesses only the electronic nonlinearities, can be performed over wide spectral ranges, for example from 500 to 2000 nm. The resulting third harmonic wavelength typically spans the electronic molecular transitions associated with the nonlinearities. By measuring the spectral distribution of both the amplitude and phase of the third harmonic signal, the dominant transitions (between the“essential states”) contributing to the nonlinearity can be identified. Such information is most useful for comparing with theories in which the oscillator strengths (transition dipole moments) for the various molecular transitions are calculated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sauteret, C., Hermann, J. -P., Frey, R., Pradere, F., Ducuing, J., Baughman, R.H. and Chance, R. R., Phys. Rev. Lett., 36 956 (1976).Google Scholar
2. Torruellas, W. E., Rochford, K. B., Zanoni, R. and Stegeman, G. I., Opt. Comm., 82, 94 (1991); corrections in Stegeman, G. I., Torruellas, W., Rochford, K. B., Zanoni, R., Krug, W., Miao, E. and Beranek, M.W., Proceedings of the 1991 MRS Spring Meeting, in pressGoogle Scholar
3. Torruellas, W. E., Neher, D., Zanoni, R., Stegeman, G. I., Kajzar, F., Leclerc, M., Chem. Phys. Lett., 175, 11 (1990).Google Scholar
4. Aramaki, S., Torruellas, W., Zanoni, R. and Stegeman, G. I., Opt. Comm., 85, 527 (1991).Google Scholar
5. Dixit, S. N., Guo, D. and Mazumdar, S., Phys. Rev. B 43, 6781 (1991).Google Scholar
6. Mazumdar, S., Guo, D. and Dixit, S. N., Proc. SPIE, Vol. 1436, 137 (1991).Google Scholar
7. Guo, D., Mazumdar, S. and Dixit, S. N., unpublished.Google Scholar
8. Yu, J., Friedman, B., Baldwin, P. R. and Su, W. P., Phys. Rev. B 39, 12814 (1989).Google Scholar
9. Fann, W. -S, Benson, S., Madey, J. M. J., Etemad, S., Baker, G. L. and Kajzar, F., Phys. Rev. Lett. 62, 1492 (1989).Google Scholar
10. Kawabe, Y., Jarka, F., Peyghamberian, N., Guo, D., Mazumdar, S., Dixit, S. N. and Kajzar, F., Phys. Rev. B, 44, 6530 (1991).Google Scholar
11. van Beek, J. B. and Albrecht, A. C., Chem. Phys. Lett., in press;Google Scholar
van Beek, J. B., Kajzar, F. and Albrecht, A. C., J. Chem. Phys., 25, 6400 (1991).Google Scholar
12. Hasagawa, T., Ishikawa, H., Koda, T., Takeda, K., Kobayashi, H. and Kubodera, K., Synth. Metals, 41–43, 3151 (1991).Google Scholar