Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T12:53:17.670Z Has data issue: false hasContentIssue false

Nuclear Magnetic Resonance Studies of Type II Superconductors*

Published online by Cambridge University Press:  15 February 2011

F. Y. Fradin*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The results of nuclear magnetic resonance (nmr) experiments on simple type–I superconductors were among the first and most important verifications of the BCS theory of superconductivity. In this paper, the application of nmr techniques to the study of superconducting properties in the more complex type–II superconductors will be reviewed. The discussion will include the effect of material parameters (e.g., degree of long range crystalline order, density of states at the Fermi level, effects of magnetic dopants) on the superconducting properties, including size of the superconducting gap, vortex structure, upper–critical field Hc2, and variations in Tc. Emphasis will be placed on high Tc, high Hc2 materials, i.e., A15 compounds and the ternary Chevrel phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U.S. Department of Energy.

References

REFERENCES

1. Hebel, L. C. and Slichter, C. P., Phys. Rev. 113, 1504 (1957).Google Scholar
2. Bardeen, J. et al. , Phys. Rev. 108, 1175 (1957).Google Scholar
3. MacLaughlin, D. E. in Solid State Physics, Vol. 31, Ehrenreich, H., Seitz, F. and Turnbull, D. eds. (Academic Press 1976) p. 1.Google Scholar
4. Parks, R. D., ed. Superconductivity, Vols. 1 & 2 (Dekker 1969).Google Scholar
5. Fite, W. and Redfield, A. G., Phys. Rev. Lett. 17, 381 (1966).Google Scholar
6. Redfield, A. G., Phys. Rev. 162, 367 (1967).Google Scholar
7. Fradin, F. Y. and Zamir, D., Phys. Rev. B 7, 4861 (1973).Google Scholar
8. Schweiss, B. P. et al. , in Superconductivity in d– and f–band Metals, Douglass, D. H. ed. (Plenum Press 1976) p. 189.CrossRefGoogle Scholar
9. McMillan, W. L., Phys. Rev. 167, 331 (1968).Google Scholar
10. Fradin, F. Y. and Williamson, J. D., Phys. Rev. B 10, 2803 (1974).Google Scholar
11. Fradin, F. Y. and Cinader, G., Phys. Rev. B 16, 73 (1977).Google Scholar
12. Fradin, F. Y. et al. , in Superconductivity in d– band f–band Metals, douglass, D. H. ed. (Plenum Press 1976) p. 297.Google Scholar
13. See for example, Poate, J. M. et al. , in Superconductivity in d– and f–band Metals, Douglass, D. H. ed. (Plenum Press 1976) p. 489.Google Scholar
14. Fradin, F. Y. et al. , Solid State Commun. 30, 737 (1979).Google Scholar
15. Fischer, φ. et al. , J. Phys. C 8, L474 (1975);Google Scholar
Fischer, φ. et al. in Superconductivity in d– and f–band Metals, Douglass, D. H. ed. (Plenum Press 1976) p. 175.CrossRefGoogle Scholar
16. Fradin, F. Y. et al. , Phys. Rev. Lett. 38, 719 (1977).Google Scholar