Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-22T09:07:15.284Z Has data issue: false hasContentIssue false

On the Feasibility of AB Initio Calculations of Ordering Alloy Phase Diagrams

Published online by Cambridge University Press:  21 February 2011

D. de Fontaine*
Affiliation:
University of CaliforniaDepartment of Materials Science and Mineral EngineeringBerkeley, CA 94720
Get access

Abstract

Many stable or metastable intermetallic phases useful to the alloy designer have crystal structures which are ordered superstructures of a parent disordered phase. A highly reliable statistical mechanical method (CVM) has now been developed for calculating such superstructure phase equilibria derived from say, the fcc parent lattice. To obtain phase diagrams, one needs certain physical parameters, such as effective pair interaction ratios. It is possible, in principle, to extract these parameters from band structure calculations in the coherent potential approximation (CPA), particularly from recently developed cluster-CPA techniques. If sufficient accuracy can be achieved, truly first-principles phase diagram calculations may soon become feasible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fontaine, D. de, Solid State Phys., Ehrenreich, H., Seitz, F. and Turnbull, D., Eds., 34, pp. 73294, Academic Press (1979).Google Scholar
2. Sanchez, J. M. and Fontaine, D. de, Phys. Rev. B 17, 2926 (1978).CrossRefGoogle Scholar
3. Fontaine, D. de, Modulated Structure Materials, NATO ASI Series E, No. 83, Tsakalakos, T., Ed., pp. 4380, Martinus Nijhoff, Publ. (1984).CrossRefGoogle Scholar
4. Sanchez, J. M., private communication.Google Scholar
5. Bieber, A. and Gautier, F., J. of the Phys. Soc. of Jap., 53, 2061, 1984.CrossRefGoogle Scholar
6. Sanchez, J. M. and Fontaine, D. de, Structure and Bonding in Crystals II, O'Keeffe, M. and Navrotsky, A., Eds., pp. 117132, Academic Press, 1981.CrossRefGoogle Scholar
7. Kanamori, J., Progr. Theor. Phys. 35, 66 (1966).CrossRefGoogle Scholar
8. Allen, S. M. and Cahn, J. W., Acta Metall. 20, 423 (1972): Scripta Metall. 7, 1261 (1973).CrossRefGoogle Scholar
9. Kanamori, J. and Kakehashi, Y., J. Phys. (Paris) 38, C7274 (1977).CrossRefGoogle Scholar
10. Finel, A. and Ducastelle, F., Phase Tranformations in Solids, MRC Symposium Proceedings, 21, pp. 293298, North-Holland (1984).Google Scholar
11. Mohri, T., Sanchez, J. M. and Fontaine, D. de, Acta Metall., in press.Google Scholar
12. Kikuchi, R., Phys. Rev. 81, 988 (1951).CrossRefGoogle Scholar
13. Barker, J. A., Proc. Rog. Soc. A, 216, 45 (1953).Google Scholar
14. Sanchez, J. M., Ducastelle, F. and Gratias, D., preprint.Google Scholar
15. Sanchez, J. M. and Fontaine, D. de, Phys. Rev. B 21, 216 (1980).CrossRefGoogle Scholar
16. Kikuchi, R., J. Chem. Phys. 60, 1071 (1974).CrossRefGoogle Scholar
17. Baal, C. M. Van, Physica (Utrecht) 64, 571 (1973).CrossRefGoogle Scholar
18. Fontaine, D. de and Kikuchi, R., Applications of Phase Diagrams in Metallurgy and Ceramics, Ed. by Carter, G. C., National Bureau of Standards SP-496 (1978), pp. 967998.Google Scholar
19. Sanchez, J. M. and Fontaine, D. de, Phys. Rev. B 25, 1759 (1982).CrossRefGoogle Scholar
20. Sanchez, J. M., Fontaine, D. de and Teitler, W., Phys. Rev. B 26, 1465 (1982).CrossRefGoogle Scholar
21. Binder, K., Lebowitz, J. L., Phani, M. K. and Kalos, M. H., Acta Metall. 29, 1655 (1981).CrossRefGoogle Scholar
22. Inden, G., private communication.Google Scholar
23. Fontaine, D. de, Acta Metall. 23, 553 (1975).CrossRefGoogle Scholar
24. Mohri, T., Sanchez, J. M. and Fontaine, D. de, preprint.Google Scholar
25. Sanchez, J. M., Barefoot, J. R., Jarrett, R. N. and Tien, J. K., Acta Metall. 32, 1519 (1984).CrossRefGoogle Scholar
26. Sigli, C. and Sanchez, J. M., CALPHAD journal, in press.Google Scholar
27. Sanchez, J. M. and Lin, C. H., Phys. Rev. B 30 (1984).CrossRefGoogle Scholar
28. Sanchez, J. M., Jarrett, R. N., Sigli, C. and Tien, J. K. in High-Termperature Alloys: Theory and Design, J. O. Stiegler, Ed., Oak Ridge National Lab. (in press).Google Scholar
29. Faulkner, J. S., Progr. Mat. Science, Christian, J. W., Haasen, P. and Massalski, T. B., Eds., pp. 1187, Pergamon Press (1982).Google Scholar
30. Louie, S., private communication.Google Scholar
31. Moruzzi, V. L., Williams, A. R. and Janak, J. F., Phys. Rev. B 15, 2854 (1977).CrossRefGoogle Scholar
32. Cohen, M. L., Physica Scripta, T1, 5 (1982).CrossRefGoogle Scholar
33. Williams, A. R., discussion in Theory of Alloy Phase Formation, Bennett, L. H., Ed. p. 63, Met. Soc. AIME (1980).Google Scholar
34. Ehrenreich, H. and Schwartz, L. M., Solid State Phys., Ehrenreich, H., Seitz, F. and Turnbull, D., Eds., SSP 31, pp. 149280 (1976).Google Scholar
35. Gautier, F., Ducastelle, F. and Giner, J., Phil. Mag. 31, 1373 (1975).CrossRefGoogle Scholar
36. Pettifor, D. G. in Physical Metallurgy, Cahn, R. W. and Haasen, P., Eds., pp. 74152, Elsevier (1983).Google Scholar
37. Gonis, A. and Freeman, A. J., preprint.Google Scholar
38. Gonis, A., Stocks, G. M., Butler, W. H. and Winter, H., Phys. Rev. B 29, 555 (1984).CrossRefGoogle Scholar
39. Gonis, A., Butler, W. H. and Stocks, G. M., Phys. Rev. Letters 50, 1482 (1983).CrossRefGoogle Scholar
40. Clapp, P. C., Phys. Rev. B 4, 255 (1971).CrossRefGoogle Scholar
41. Ducastelle, F., J. Phys. C 8, 3297 (1975).CrossRefGoogle Scholar
42. Ducastelle, F. and Gautier, F., J. Phys. F 6, 2039 (1976).CrossRefGoogle Scholar
43. Treglia, G. and Ducastelle, F., J. Phys. F 10, 2137 (1980).Google Scholar
44. Bieber, A. and Gautier, F., Solid State Comm. 38, 1219 (1981).CrossRefGoogle Scholar
45. Bieber, A., Ducastelle, F., Gautier, F., Treglia, G. and Turchi, P., Solid State Comm. 45, 585 (1983).CrossRefGoogle Scholar
46. Bieber, A. and Gautier, F., Physica 107, B 71 (1981).Google Scholar
47. Gautier, F., High-Temperature Alloys: Theory and Design, J. D. Stiegler, Ed., Oak Ridge National Lab. (in press).Google Scholar
48. Ducastelle, F., Phase Transformations in Solids, MRS Symposium Proceedings Vol. 21, pp. 375–380.Google Scholar
49. Landesman, J. P., Turchi, P., Ducastelle, F. and Treglia, G., Phase Transformations in Solids, Tsakalakos, T., Ed., Mat. Res. Symposium Proc. Vol 21, pp. 363368, Elsevier (1984).Google Scholar
50. Bieber, A., Gautier, F., Treglia, G. and Ducastelle, F., Solid State Comm. 39, 149 (1981).CrossRefGoogle Scholar
51. Jordan, R. G., Sohal, G. S., Gyorffy, B. L., Durham, P., Temmerman, W. M. and Weinberger, P., preprint.Google Scholar
52. Siegel, R. W. in Ann. Rev. Mater. Sci. 10, 393425 (1980).CrossRefGoogle Scholar
53. Berko, S. in Positron Solid State Physics, Int. School of Physics “Enrico Fermi”, Brandt, W. and Dupasquler, A., Eds., North Holland (1983).Google Scholar
54. Georgopoulos, P. and Cohen, J. B., in Modulated Structure Materials, NATO ASI Series E., No 83, T. Tsakalakos, Ed., pp. 265–284).Google Scholar
55. Sanchez, J. M., Physica 111A, 200 (1982).CrossRefGoogle Scholar
56. Georgopoulos, P. and Cohen, J. B., J. Phys. (Paris) 38, C7 MI (1977).CrossRefGoogle Scholar
57. Gaspard, J. P. and Gratias, D., private communication.Google Scholar
58. Royen, E. Van and Hosson, J. de, unpublished work at the University of Groningen, The Netherlands.Google Scholar
59. Cenedese, P. and Gaspard, J. P., Phase Tranformations in Solids, MRC Symposium Proceedings Vol.21, pp. 5155, North-Holland (1984).Google Scholar
60. Gyorffy, B. L. and Stocks, G. M., Phys. Rev. Letters 50, 374 (1983).CrossRefGoogle Scholar
61. Kittler, R. C. and Falicov, L. M., J. Phys. C 9, 4259 (1976).CrossRefGoogle Scholar
62. Falicov, L. M. and Kittler, R. C., Theory of Alloy Phase Formation, L. H. Bennett, Ed., pp. 303–325.Google Scholar
63. Weinberger, P., private communication.Google Scholar
64. Butler, W. H., private communication.Google Scholar