Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T08:34:30.609Z Has data issue: false hasContentIssue false

Order and Disorder in Semiconductors

Published online by Cambridge University Press:  26 February 2011

Hans J. Queisser*
Affiliation:
Max-Planck-Institut für Festkörperforschung,Heisenbergst.1, D-70569 Stuttgart, Germany
Get access

Abstract

The astounding success of microelectronics rests on a simple materials principle : creating a highly purified and perfected , spatially ordered semiconductor matrix , whose electrical and optical properties may be selectively adjusted by local substitutions of host atoms by dopant atoms. This unique materials utilization differs remarkably from all earlier technologies , because the controlled, almost imperceptibly small disorder by doping (rather than the ordered host ) dominates the relevant properties ! Defect control is thus a major concern for semiconductor technology. Homogeneity is an absolute necessity for this strategy, but only a few of the semiconductors can be made so homogeneous as to suppress the strong deleterious effects of inhomogeneity. Recent advances are summarized : atomic resolution of defect analyses, multiatom reactions and hope for applications,contactless measurements, gettering as well as detailed theory of simulations. The emergence of novel quantum devices, with both reduced dimensions and reduced dimensionalities heralds a paradigm change, since the quantizing small geometries exert stronger influences than defects do; nevertheless, materials perfection and interface control remain prerequisites for these structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shockley, W..Electrons and Holes in Semiconductors, (van Nostrand,Princeton, 1950), still a remarkable source, see esp. Chapter 1Google Scholar
2. Cohen, B.G., Sol.St.Electron. 10,33 (1967),also: G.L. Pearson and J. Bardeen, Phys.Rev. 75, 865 (1949), proof of substitional position of the dominant dopantsGoogle Scholar
3. Grove, A., Leistiko, O., and Sah, C.T., J.Appl.Phys. 35, 2695 (1964)Google Scholar
4. Lau, L., Mader, L., Mazure, C., Werner, C., and Orlowski, M., AppLPhys. A49, 671,(1989)Google Scholar
5. Nicolhan, Edward H. and Chatterjee, Ajay, J.Electrochem.Soc. 141, 3580 (1994)Google Scholar
6. Gatts, C. Duscher, G. Müllejans, H., and Rühle, M. (private commun.,to be publ. 1995)Google Scholar
7. Queisser, H.J., J.Phys.Soc.Jpn. 18, Suppl. Ill, 142 (1963)Google Scholar
8. Queisser, H.J., Finch, R.H., and Washburn, J., J.Appl.Phys. 33, 1536 (1962). This collaboration between UC Berkeley and Shockley Transistor Corp. identified the oxidation-induced stacking faults by the very first transmission electron microscopy on Si defectsGoogle Scholar
9. For a review, see Queisser, H.J., in Defects in Semiconductors II. Mahajan, S. and Corbett, J.W., editors, MRS Symposia, Vol. 14,p.323 (1983)Google Scholar
10. Tsui, P.G.Y. et al., Paper 19.5.1 at Int.Electron Dev.Conf. San Francisco, 1995, (to be published)Google Scholar
11. Tsoukalas, D. and Tsamis, C., Appl. Phys. Lett. 66, 971 (1995)Google Scholar
12. Stolk, P.A., Eaglesham, D.J., Gossmann, H.-J., and Poate, J.M., Appl.Phys. Lett. 66, 1370 (1995)Google Scholar
13. Delerue, C. and Lannoo, M., Mat.Sci. Forum 143147, 699 (1994)Google Scholar
14. Kukimoto, H., Mat.Sci.Forum 143147, 385 (1994)Google Scholar
15. AKennedy, T., Glaser, E.R., Murdin, B.N., Pidgeon, C.R., Prior, K.A., and Cavenett, B.C., Appl.Phys. Lett. 65, 1112 (1994)Google Scholar
16. Tomiya, S., Morita, E., Ukita, M., Itoh, S., Nakano, K., and Ishibashi, A., Appl. Phys. Lett. 66, 1208 (1995)Google Scholar
17. Lester, S.D., Ponce, F.A., Crawford, M.G., and Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995)Google Scholar
18. Queisser, H.J., in Proc.Int.Conf. Phys.Techn.Compensated Semicond. (Madras, 1985),Gopalam, B., editor, p.1 Google Scholar
19. Chattopadhyay, D.C. and Queisser, H.J., Revs.Mod.Phys. 53, 745 (1981)Google Scholar
20. Graff, K. and Pieper, H., J.Electrochem.Soc. 128, 669 (1981) and Ref.[25],Ch. 44.1Google Scholar
21. Stutzmann, M. and Estle, T.L., editors .Hydrogen in Serniconductors.(Elsevier, Amsterdam 1991)Google Scholar
22. Cheng, Y.M. and Stavola, M., Phys. Rev.Lett. 73, 3419 (1994)Google Scholar
23. Goetzberger, A. and Shockley, W., J.Appl. Phys 31, 1821 (1960), also Ref.[25]Google Scholar
24. Lee, D.M. and Rozgonyi, G.A., AppLPhys. Lett. 65, 350 (1994)Google Scholar
25. Graff, K., Metallic Impurities in Silicon-Device Fabrication, (Springer, Heidelberg, New York, 1995) This recent book lists the most important metallic impurities in Si, gives numerical parameters for these impurities and offers recipes for etches and means of defect observations.Google Scholar
26. Sveinbjörnsson, E.Ö., Engström, O., and Södervall, U. J.Appl.Phys. 73,7311 (1993)Google Scholar
27. Pantelides, S.T., J.Appl.Phys. 75, 3264 (1994)Google Scholar
28. Pistoulet, B., Roche, F.M., and Abdalla, S., Phys. Rev. B 30, 5987 (1984)Google Scholar
29. Sheinkman, M.K. and Shik, Y.Ya., Fiz.Tekh.Poluprovodn. 10, 209 (1976)Google Scholar
30. Queisser, H.J., Annu.Reviews Mater.Sci. 22, 1 (1992)Google Scholar
31. Gregory, B.L., Appl. Phys. Lett. 16, 67 (1970)Google Scholar
32. Lang, D.V., Logan, R.A., and Jaros, M., Phys.Rev. B19, 1015 (1979)Google Scholar
33. Queisser, H.J., Phys. Rev.Lett. 54, 234 (1985), also Refs.[29,30]Google Scholar
34. Queisser, H.J. and Theodorou, D.E., Phys.Rev.Lett. 43, 401 (1979); for a very recent application towards measuring metal-insulator transitions, see: M. Smith, J.Y. Lin, and H.X. Jiang, Phys.Rev.B51, 4132 (1995)Google Scholar
35. Theodorou, D.E., Queisser, H.J., and Bauser, E., Appl. Phys. Lett. 41, 628 (1982)Google Scholar
36. Kirk, W.P. and Reed, M. A., Nanostructures and Mesoscopic Systems, (Academic, New York, 1992)Google Scholar
37. Bauser, E., Atomic Mechanisms in Semiconductor Liquid Phase Epitaxy, ch.20 in Handbook of Crystal Growth. Hurle, D.T.J., editor (Elsevier, Amsterdam, 1994)Google Scholar
38. A recent example of a team effort toward optimizing InGaAs/GaAs epitaxy, see: Höpner, A., Rechenberg, B., Seitz, H., Procop, H., Scheerschmidt, K., and Queisser, H.J., submitted to phys. stat. sol. (1995)Google Scholar
39. Ralls, K.S., Skocpol, W.J., Jackel, L.D., Howard, R.E., Fetter, L.A., Epworth, R.W., and Tennant, D.M., Phys. Rev. Lett. 52, 228 (1984)Google Scholar
40. Rauh, H., Wacker's Atlas for Characterization of Defects in Silicon (Wacker-Chemitronic Co., Burghausen,Germany, undated). This atlas describes the categories of defects,all important preferential etches and gives pictorial examples of defect photomicrographs.Google Scholar
41. Queisser, H.J. Kristallene Krisen (Piper, Munich, 1985), English version: The Conquest of the Microchip (Harvard Univ.Press, Cambridge, MA, 1988)Google Scholar
42. A very recent review describes the ubiquity of H on and in Si: Pietsch, G.J., Appl.Phys. A 60, 347 (1995)Google Scholar
43. Eaglesham, David J., MRS Bulletin XIX, (12), 59 (December 1994). Acceptance speech for the MRS Outstanding Young Investigator Award at the 1994 MRS Spring Meeting : “What We Still Don’t Know About SiliconGoogle Scholar