Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T06:54:42.542Z Has data issue: false hasContentIssue false

Oxygen-Generating Gel Systems Induced by Visible Light and Application to Artificial Photosynthesis

Published online by Cambridge University Press:  17 January 2012

Kosuke Okeyoshi
Affiliation:
RIKEN Advanced Science Institute Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo
Ryo Yoshida
Affiliation:
Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo
Get access

Abstract

Toward complete artificial photosynthesis systems to generate hydrogen and oxygen using visible light and water, we firstly design and fabricate oxygen-generating gel systems using the electrostatic interactions of ionic functional groups and steric effects of a polymer network. By using a graft polymer chain with Ru(bpy)32+ units as sensitizers to closely arrange RuO2 nanoparticles as catalyst, the functional groups transmit multiple electrons cooperatively to generate oxygen. In this study, a novel strategy is shown to design a hierarchical network structure using colloidal nanoparticles and macromonomers.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Creutz, C., Sutin, N., Proc. Natl. Acad. Sci. USA 72, 2858 (1975).10.1073/pnas.72.8.2858CrossRefGoogle Scholar
[2]Kalyanasundaram, K., Grätzel, M., Angew. Chem. Int. Ed. 18, 701 (1979).10.1002/anie.197907011CrossRefGoogle Scholar
[3]Sun, L., Berglund, H., Davydov, R., Norrby, T., Hammarstrolm, L., Korall, P., Börje, A., Philouze, C., Berg, K., Tran, A., Andersson, M., Stenhagen, G., Mårtensson, J., Almgren, M., Styring, S., Åkermark, B., J. Am. Chem. Soc. 119, 6996 (1997).10.1021/ja962511kCrossRefGoogle Scholar
[4]Pillai, K. C., Kumar, A. S., Zen, J. M., J. Mol. Catal. A 160, 277 (2000).10.1016/S1381-1169(00)00262-4CrossRefGoogle Scholar
[5]Yagi, M., Kaneko, M., Chem. Rev. 101, 21 (2001).10.1021/cr980108lCrossRefGoogle Scholar
[6]Ruettinger, W., Yagi, M., Wolf, K., Bernasek, S., Dismukes, G. C., J. Am. Chem. Soc. 122, 10353 (2000).10.1021/ja0005587CrossRefGoogle Scholar
[7]Kokufuta, E., Tanaka, T., Macromolecules 24, 1605 (1991).10.1021/ma00007a024CrossRefGoogle Scholar
[8]Stayton, P. S., Shimoboji, T., Long, C., Chilkoti, A., Chen, G., Harris, J. M., Hoffman, A. S., Nature 378, 472 (1995).10.1038/378472a0CrossRefGoogle Scholar
[9]Yoshida, R., Uchida, K., Kaneko, Y., Sakai, K., Kikuchi, A., Sakurai, Y., Okano, T., Nature 374, 240 (1995).10.1038/374240a0CrossRefGoogle Scholar
[10] In the case of the gel system, the O2 gas was generated for ca. 4 h until the sacrificial oxidant, [Co(NH3)5Cl]2+ was consumed. [Co(NH3)5Cl]2+ is irreversively reduced (see Fig. 1). Google Scholar
[11]Okeyoshi, K., Yoshida, R., Adv. Funct. Mater. 20, 708 (2010).10.1002/adfm.200901166CrossRefGoogle Scholar
[12]Okeyoshi, K., Yoshida, R., Soft Matter 5, 4118 (2009).10.1039/b908144eCrossRefGoogle Scholar