Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T16:16:59.106Z Has data issue: false hasContentIssue false

Performance modification in solution-processed SnZnO thin film transistor

Published online by Cambridge University Press:  17 April 2019

Dong Lim Kim
Affiliation:
School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul, 120-749, Republic of Korea
Hyun Jae Kim
Affiliation:
School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul, 120-749, Republic of Korea
Get access

Abstract

Tin zinc oxide (SnZnO) thin film transistors (TFTs) with different component fraction fabricated by solution process were reported. Sn chloride and Zn acetate were used as precursor and the maximum annealing temperature was 500°C. The electrical characteristics of TFTs were acutely affected by the molar ratio between Sn and Zn in the lattice, and showed the highest mobility and on-to-off ratio of about 17 cm2/Vs and 2×106, respectively. The origins of the high performance were traced through both structural and electrical aspects. Sn was generally considered to offer carrier path by superposition of s orbital, but it was found that the increase of Sn fraction only below specific value in lattice contributed to increase mobility, which could be explained by the structural distortion and the defect generation. Zn atoms introduced in the lattice were necessary to control both mobility and carrier concentration. From these results, the solution-processed SnZnO TFT with high performance was suggested.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakata, M., Takechi, K., Azuma, K., Tokumitsu, E., Yamaguchi, H., and Kaneko, S., Appl. Phys. Express 2, 021102 (2009).Google Scholar
2. Gupta, A., and compaan, A. D., Appl. Phys. Lett. 85 (4), 684 (2004).Google Scholar
3. Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H., Appl. Phys. Lett. 89, 112123 (2006).Google Scholar
4. Kim, M., Jeong, J. H., Lee, H. J., Ahn, T. K., Shin, H. S., Park, J.-S., Jeong, J. K., Mo, Y.-G., Kim, H. D., Appl. Phys. Lett. 90, 212114 (2007).Google Scholar
5. Liu, S.-J., Fang, H.-W., Su, S.-H., Li, C.-H., Cherng, J.-S., Hsieh, J.-H., and Juang, J.-Y., Appl. Phys. Lett. 94, 092504 (2009).Google Scholar
6. Kim, G. H., Ahn, B. D., Shin, H. S., Jeong, W. H., Kim, H. J., and Kim, H. J., Appl. Phys. Lett. 94, 233501 (2009).Google Scholar
7. Jeong, W. H., Kim, G. H., Shin, H. S., Ahn, B. D., and Kim, H. J., Ryu, M.-K., Park, K.-B., Seon, J.-B., Lee, S. Y., Appl. Phys. Lett. 96, 093503 (2010).Google Scholar
8. Kim, G. H., Kim, H. S., Shin, H. S., Ahn, B. D., Kim, K. H., and Kim, H. J., Thin Solid Films 517 (14), 4007-4010 (2009).Google Scholar
9. Hosono, H., J. Non-Cryst. Solids 352, 851858 (2006).Google Scholar
10. Klasens, H. A., and Koelmans, H., Solid-state Electron. 7, 701702 (1964).Google Scholar
11. Presley, R. E., Munsee, C. L., Park, C.-H., Hong, D., Wager, J. F., and Keszler, D. A., J. Phys. D: Appl. Phys. 37, 2810-2813 (2004).Google Scholar
12. Chang, Y.-J., Lee, D.-H., Herman, G. S., and Chang, C.-H., Electrochem. Solid-State Lett. 10 (5), H135-H138 (2007).Google Scholar
13. Fortunato, E. M. C., Pereira, L. M. N., Barquinha, P. M. C., do Rego, A. M. Botelho, Goncalves, G., Vila, A., Morante, J. R., and Martins, R. F. P., Appl. Phys. Lett. 92, 222103 (2008).Google Scholar
14. Jeong, Y., Song, K., Kim, D., Koo, C. Y., and Moon, J., J. Electrochem. Soc. 156 (11), H808-H812 (2009).Google Scholar
15. Kim, G. H., Shin, H. S., Ahn, B. D., Kim, K. H., Park, W. J., and Kim, H. J., J. Electrochem. Soc. 156 (1), H7-H9 (2009).Google Scholar
16. Zhu, X., and Geis-Gerstorfer, J., Chem. Eng. Technol. 26 (10), 1084-1087 (2003).Google Scholar
17. Seo, S.-J., Choi, C. G., Hwang, Y. H., and Bae, B.-S., J. Phys. D: Appl. Phys. 42, 035106 (2009).Google Scholar
18. Kerber, S. J., Bruckner, J. J., Wozniak, K., Seal, S., Hardcastle, S., and Barr, T. L., J. Vac. Sci. Technol. A 14 (3), 1314-1319 (1996).Google Scholar
19. Hayashi, Y., Kondo, K., Murai, K., Moriga, T., Nakabayashi, I., Fukumoto, H., Tominaga, K., Vacuum 74, 607611 (2007).Google Scholar