Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T09:47:33.906Z Has data issue: false hasContentIssue false

p-GaAs Base Regrowth for GaN HBTs and BJTs

Published online by Cambridge University Press:  15 March 2011

G. Dang
Affiliation:
University of Florida, Department of Chemical Engineering, Gainesville, FL 32611
A.P. Zhang
Affiliation:
University of Florida, Department of Chemical Engineering, Gainesville, FL 32611
X.A. Cao
Affiliation:
University of Florida, Department Materials Science and Engineering, Gainesville, FL 32611
F. Ren
Affiliation:
University of Florida, Department of Chemical Engineering, Gainesville, FL 32611
S.J. Pearton
Affiliation:
University of Florida, Department Materials Science and Engineering, Gainesville, FL 32611
H. Cho
Affiliation:
University of Florida, Department Materials Science and Engineering, Gainesville, FL 32611
W.S. Hobson
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
J. Lopata
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
J.M. van Hove
Affiliation:
SVT Associates, Eden Prairie, MN 55344
J.J. Klaassen
Affiliation:
SVT Associates, Eden Prairie, MN 55344
C.J. Polley
Affiliation:
SVT Associates, Eden Prairie, MN 55344
A.M. Wowchack
Affiliation:
SVT Associates, Eden Prairie, MN 55344
P.P. Chow
Affiliation:
SVT Associates, Eden Prairie, MN 55344
D.J. King
Affiliation:
SVT Associates, Eden Prairie, MN 55344
Get access

Abstract

Low resistance ohmic contacts are difficult to form to p-type GaN and AlGaN due to the unavailability of growth methods for highly p-doped GaN and AlGaN. A p-type carbon-doped GaAs regrowth on p-GaN prior to ohmic metallization has been shown in previous work to improve contact resistance to p-GaN [13]. Applying the regrowth method to the p-base regions of npn structured bipolar transistors, AlGaN/GaN heterojunction bipolar transistors and GaN bipolar junction transistors have been demonstrated. GaN/AlGaN epilayers were grown with a molecular beam epitaxy system. Highly carbon-doped p-GaAs (1020 cm−3) was regrown on the devices (∼500 Å) in the base contact region by metal organic chemical vapor deposition after emitter mesa etching. Emitter and base mesa structures were formed by Inductively Coupled Plasma etching under low damage conditions with a Cl2/Ar chemistry. SiO2 was used for emitter sidewall formation to reduce leakage current to the emitter, as well as for a mask for GaAs base regrowth. Very high current densities were obtained for common base operation in both device types. The devices were operable at 250 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chyi, J.I., Lee, C.M., Chuo, C.C., Chi, G.C., Dang, G., Zhang, A.P., Ren, F., Cao, X.A., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., MRS Internet J. Nitride Semicond. Res. 4, 8 (1999).Google Scholar
2. Ren, F., Hong, M., Chu, S.N.G., Marcus, M., Schurmann, M.J., Baca, A.G., Pearton, S.J., and Abernathy, C.R., Appl. Phys. Lett. 23, 3893 (1998).Google Scholar
3. Wu, Y.F., Keller, B.P., Fini, P., Keller, S., Jenkins, T.Z., Kehias, L.T., DenBaars, S.P. and Mishra, U.K., IEEE Electron. Dev. Lett. EDL 19, 50 (1998).Google Scholar
4. Foutz, B.E., Eastman, L.F., Bhapkar, U.V., and Shur, M.S., Appl. Phys. Lett., 70, 2849 (1997).Google Scholar
5. Asbeck, P.M., Yu, E.T., Lau, S.S., Sullivan, G.J., Hove, J. Van, and Redwing, J., Electron. Lett. 33, 1230 (1997).Google Scholar
6. Nguyen, N.X., Nguyen, C., and Grider, D.E., Electron. Lett. 34, 811 (1998).Google Scholar
7. Chen, Q., Yang, J.W., Gaska, R., Khan, M.A., Shur, M.S., Sullivan, G.J., Sailor, A.L., Higgins, J.A., Ping, A.T., and Adesida, I., IEEE Electron. Dev. Lett. EDL 19, 44 (1998).Google Scholar
8. Fan, Z., Lu, C., Botchkarov, A., Tang, H., Salvador, A., Atkas, O., Kim, W., and Morkoc, H., Electron. Lett. 33, 814 (1997).Google Scholar
9. Yoshida, S. and Suzuki, J., J. Appl, Phys. 85, 7931 (1999).Google Scholar
10. Ren, F., Abernathy, C.R., Hove, J.M. Van, Chow, P.P., Hickman, R., Klaassen, J.J., Kopf, R.F., Cho, H., Jung, K.B., LaRoche, J.R., Wilson, R.G., Han, J., Shul, R.J., Baca, A.G., and Pearton, S.J., MRS Internet J. Nitride Semicond. Res. 3, 41 (1998).Google Scholar
11. Han, J., Baca, A.G., Shul, R.J., Willison, C.G., Zhang, L., Ren, F., Dang, G., Zhang, A.P., Donovan, S.M., Cao, X.A., Jung, K.B., Cho, H., Abernathy, C.R., Pearton, S.J., and Wilson, R.G., Appl. Phys. Lett. 74, 2702 (1999).Google Scholar
12. McCarthy, L., Kozodoy, P., Rodwell, M., DenBaars, S., and Mishra, U.K., IEEE Electron. Dev. Lett. EDL 20, 277 (1999).Google Scholar
13. Dang, G.T., Zhang, A.P., Ren, F., Donovan, S.M., Abernathy, C.R., Hobson, W.S., Lopata, J., Chu, S.N.G., Cao, X.A., Wilson, R.G., Pearton, S.J., Solid-State Electron. 44 105 (2000)Google Scholar
14. Hove, J.M Van, Hickman, R., Klaassen, J.J., Chow, P.P., and Ruden, P.P., Appl. Phys. Lett. 70, 282 (1997).Google Scholar
15. Dyakonova, N., Dickens, A., Shur, M.S., Gaska, R., and Yang, J.W., Appl. Phys. Lett. 72, 2562 (1998).Google Scholar
16. Dmitriev, V.A., Irvine, K.G., Carter, C.H. Jr., Kuznetsov, N.I., and Kalinina, E.V., Appl. Phys. Lett. 68, 229 (1996).Google Scholar
17. Osinsky, A., Shur, M.S., and Gaska, R., Mater. Res. Soc. Symp. Proc. 512, 15 (1998).Google Scholar