Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T10:27:13.394Z Has data issue: false hasContentIssue false

Photodesorption Dynamics in Threshold-Fluence UV Laser Induced Surface-Decomposition of Bi2Sr2CaCu2O8

Published online by Cambridge University Press:  01 January 1992

Lawrence Wiedeman
Affiliation:
Mechanics and Materials Technology Center, The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009
Henry Helvajian*
Affiliation:
Mechanics and Materials Technology Center, The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009
*
*Person to whom correspondence should be addressed.
Get access

Abstract

In this article, we review experimental measurements taken in our laboratory for the low-fluence UV pulsed laser photodecomposition of the perovskite ceramic Bi2Sr2CaCu2O8. We present the measured photoejected product kinetic energy (KE) distributions, including that for the ion and the neutral, the atomic and polyatomic species. For the specific case of the neutral species desorption, we present new experimental results that elucidate the change in the photophysical desorption process as a function of the incident laser fluence. The results show the transition from the electronic-induced desorption to thermal evaporation as the laser fluence is increased. The KE distribution data suggests that for low-fluence laser excitation, the primary photodesorption process is two-hole localization at a binding site followed by coulomb repulsion. A fraction of the escaping ions acquire the full coulomb KE (e2/ro; ro internuclear distance). The neutral species acquire a partial fraction of the available KE (i.e., the KE gained prior to the neutralization). The appearance of polyatomic species desorption is explained via the spectator-stripping model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Aerospace Sponsored Research Program.

References

REFERENCES

1. Kim, H-S., and Helvajian, H. J. Phys. Chem. 95, 6623 (1991).Google Scholar
2. Schildbach, M. A., and Hamza, A. V., Phys. Rev. B. 45, 6197 (1992).Google Scholar
3. Wiedeman, L., and Helvajian, H., J. Appl. Phys. 70, 4523 (1991).Google Scholar
4. Wiedeman, L., Kim, H-S., and Helvajian, H., “Laser Ablation-Mechanisms and Applications,” Miller, J. C. and Haglund, R. F Jr. (Eds) Vol. 389 (Springer-Verlag, New York, 1991) pp. 350359.Google Scholar
5. Helvajian, H., and Welle, R., J. Chem. Phys. 91, 2616 (1989).Google Scholar
6. Okano, A., Hattori, K., Nakai, Y. and Itoh, N., Surf Sci. Lett. 258, L671 (1991).Google Scholar
7. Hattori, K., Okano, A., Nakai, Y. and Itoh, N., Phys. Res. B. 45, 8424 (1992).Google Scholar
8. Van Driel, H. M., “Interfaces Under Laser Irradiation,” Laude, L. D., Baiuerle, D. and Wautelet, M. Eds. Nato/ASI Series E: Applied Sciences 134, (Martinus Nijhoff, Boston) 1987, p. 105.Google Scholar
9. Menzel, D., Appl. Phys. A 51, 163 (1990).Google Scholar
10. Gortel, Z. W., Kreuzer, H. J., Feulner, P. and Mensel, D., Phys. Rev B, 35, 8951 (1987).Google Scholar
11. Ramaker, D. E., White, C. T., and Murday, J. S., Phys. Lett. 89A, 211 (1982).Google Scholar
12. de Unamuno, S. and Fograssy, E., Mat. Sci. & Eng. B13, 29 (1992).Google Scholar
13. Ray, R. D. II, and Hellstrom, E. E., Physica C 175, 225 (1991).Google Scholar
14. Wiedeman, L., Kim, H-S., and Helvajian, H., Mat. Res. Soc. Symp. Proc. 236, 479 (1991).Google Scholar
15. Wiedeman, L., Kim, H-S., and Helvajian, H., Mat. Res. Soc. Symp. Proc. 201, 575–580 (1991).Google Scholar
16. Gortel, Z. W., Surf Sci. 231, 193 (1990).Google Scholar
17. Knotek, M. L., “Semiconductors and Insulations,” 5, (Gordon & Breach Publ.) 1983 pp. 361.Google Scholar
18. Helvajian, H., Wiedeman, L., and Kim, H-S., accepted for publication in Adv. Mat. Optics & Electronics, 1992.Google Scholar
19. Moog, E. R., Unguris, J., and Webb, M. B., Surf Sci. 134, 849 (1983).Google Scholar