No CrossRef data available.
Article contents
Photostimulable Fluorescent Nanoparticles for Biological Imaging
Published online by Cambridge University Press: 23 June 2011
Abstract
Spherical monodisperse core/shell-type nanoparticles, comprising an amorphous SiO2 core coated with a luminescent phosphor layer were synthesized by the modified Pechini processes. The sol-gel method allows covering the 50 – 500 nm core particles with different inorganic phosphor layers of about 10 nm thickness, doped with rare-earth or transition metal ions which determine the luminescent properties. Particles comprising a Zn2SiO4 shell, doped with Mn2+ ions, are not only fluorescent under UV irradiation (260 nm), but store the activation energy by trapping electrons/holes at lattice defects. This energy is released as phosphorescence in the time scale of seconds and minutes, or as photostimulated luminescence under the excitation of red light (650 nm). Traps related to these processes are different, and their concentration is affected by the preparation conditions of the particles.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2011