Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T18:06:48.603Z Has data issue: false hasContentIssue false

Picosecond Photoinduced Reflectivity Studies of GaN Prepared by Lateral Epitaxial Overgrowth

Published online by Cambridge University Press:  03 September 2012

M. Wraback
Affiliation:
U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, MD 20783, USA
H. Shen
Affiliation:
U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, MD 20783, USA
R.D. Dupuis
Affiliation:
Microelectronics Research Center, Department of Electrical Engineering, University of Texas at Austin, Austin, TX 78712-1100, USA
Get access

Abstract

The pump-probe technique has been used to perform room temperature studies of the photoinduced changes in the reflectivity ΔR associated with exciton and carrier dynamics in GaN prepared by lateral epitaxial overgrowth. For resonant excitation of cold excitons, the ΔR decay possesses a 720 ps component attributed to the free exciton lifetime in this high quality material. For electrons with small excess energy (< 50 meV), the strong increase in the ΔR decay rate with decreasing excitation density suggests that screening of the Coulomb interaction may play an important role in the processes of carrier relaxation and exciton formation. The faster decay times at a given carrier density observed for hot (> 100 meV) electron relaxation are attributed to electron-hole scattering in conjunction with the screened electron-LO phonon interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
2. Kapolnek, D., Keller, S., Vetury, R., Underwood, R., Kozodoy, P., DenBaars, S., and Misra, U., Appl. Phys. Lett. 71, 1204 (1997); T. Zheleva, O.-H. Nam, M. Bremser, and R. Davis, Appl. Phys. Lett.71, 2472 (1997).Google Scholar
3. Sasaoka, C., Sunakawa, H., Kimura, A., Nido, M., Usui, A., and Sakai, A., J. Cryst. Growth 189/190, 61 (1998); Kozodoy, P., Ibbetson, J., Marchand, H., Fini, P., Keller, S., Speck, J., DenBaars, S., and Mishra, U., Appl. Phys. Lett.73, 975 (1998).Google Scholar
4. Auston, D.H., McAfee, S., Shank, C.V., Ippen, E.P., and Teschke, O., Solid State Elec.21, 147 (1978).Google Scholar
5. Im, J.S., Moritz, A., Steuber, F., Härle, V., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 70, 631 (1997).Google Scholar
6. Hess, S., Walraet, F., Taylor, R.A., Ryan, J.F., Beaumont, B., and Gibart, P., Phys. Rev. B58, R15973 (1998).Google Scholar
7. Haag, H., Hönerlage, B., Briot, O., and Aulombard, R. L., Phys. Rev. B60, 11624 (1999).Google Scholar
8. Bunea, G.E., Herzog, W.D., Ülü, M.S., Goldberg, B.B., and Molnar, R.J., Appl. Phys. Lett. 75, 838 (1999).Google Scholar
9. Toyozawa, Y., Prog. Theor. Phys. Suppl. 12, 111 (1959).Google Scholar
10. Chichibu, S.F., Marchand, H., Minsky, M.S., Keller, S., Fini, P.T., Ibbetson, J.P., Fleischer, S.B., Speck, J.S., Bowers, J.E., Hu, E., Mishra, U.K., DenBaars, S.P., Deguchi, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 74, 1460 (1999).Google Scholar
11. Tsen, K.T., Ferry, D.K., Botchkarev, A., Sverdlov, B., Salvador, A., and Morkoc, H., Appl. Phys. Lett. 71, 1852 (1997).Google Scholar