Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T07:30:21.284Z Has data issue: false hasContentIssue false

Pillaring of a Layered Titanate With Alumina: Effect of Hydrolysis Solution

Published online by Cambridge University Press:  15 February 2011

F. Kooli
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, 305-0044, Japan
T. Sasaki
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, 305-0044, Japan
V. Rives
Affiliation:
Departamento de Quimica Inorganica, Universidad de Salamanca, 37008 Salamanca, Spain
M. Watanabe
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, 305-0044, Japan
Get access

Abstract

A layered titanate with a lepidocrocite-type structure has been pillared with Al13 Keggin ions to prepare a porous and high-surface-area material. Pillaring was achieved by ion exchange of hexylammonium (HA-Ti) or tetrabuthylammonium (TBA-Ti) intercalated titanates with Keggin Al13 complex. The thermal stability of the Al13 intercalates depended on the amount of aluminum incorporated. The surface area and porosity can be tailored by controlling the amount of aluminum uptake and by the nature of base used to prepare the aluminium pillaring solution. In addition, the material derived from HA-Ti exhibited a sharp pore size distribution with an average diameter of 2 nm, while the pillared product obtained from TBA-Ti showed mostly a broad mesoporous distribution with an average pore diameter of 4 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohtsuka, K., Chem. Mater. 9, 2039 (1997).Google Scholar
2. Catalysis Today- Pillared Clays, edited by Burch, R. (Elsevier, Amesterdam, 1988).Google Scholar
3. Sasaki, T., Watanabe, M., Michiue, Y., Komatsu, Y., Izumi, F., Takenouchi, S., Chem. Mater. 7, 1001 (1995).Google Scholar
4. Sasaki, T., Watanabe, M., Hashizume, H., Yamada, H., Nakazawa, H., J. Am. Chem. Soc. 118, 8329 (1996).Google Scholar
5. Sasaki, T., Izumi, F., Watanabe, M., Chem. Mater, 8, 777 (1996).Google Scholar
6. Sasaki, T., Nakano, S., Yamauchi, S., Watanabe, M., Chem. Mater. 9, 602 (1997).Google Scholar
7. Sasaki, T. and Watanabe, M., J. Am. Chem. Soc. 120, 4682 (1998).Google Scholar
8. Kooli, F., Sasaki, T. and Watanabe, M., Microporous Mesoporous Mater. in press (1998)Google Scholar
9. Remy, M. J., Coelho, A. C. Vieira and Poncelet, G., Microporous Mater. 7, 287 (1996).Google Scholar
10. Breen, C., Clay Miner. 26, 487 (1991).Google Scholar
11. Bottero, J. Y., Cases, F., Fiesslnger, F., and Polrier, J. E., J. Phys. Chem. 84, 2933 (1980).Google Scholar
12. Bovey, J. and Jones, W., J. Mater. Chem. 5, 2027 (1995).Google Scholar
13. Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J., J. Am. Chem. Soc. 107, 2362 (1985).Google Scholar
14. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R., Rouquerol, J., Sieminiewska, T., Pure Appl. Chem. 57, 603 (1985).Google Scholar