Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T01:41:18.108Z Has data issue: false hasContentIssue false

Planar Molecular and Macromolecular Gradients: Preparation and Properties

Published online by Cambridge University Press:  15 March 2011

J. Genzer
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905
T. Wu
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905
K. Efimenko
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905
Get access

Abstract

We present a method for fabricating polymer brushes with a gradual variation of grafting density on solid substrates. The technique for generating such structures consists of: i) deposition of a molecular gradient of polymerization initiator on the solid substrate, and ii) polymerization from the substrate bound initiator centers (“grafting from”). In this publication we describe the preparation of gradient polymer brushes of poly(acryl amide) on silica-covered substrates. We show that the polymer density within the gradient polymer brush can be varied by controlling the polymerization time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xia, Y., Whitesides, G. M., Angew. Chem. Int. Ed. Engl. 37, 550 (1998); Y. Xia, et al., Chem. Rev. 99, 1823 (1999).Google Scholar
2. Ulman, A., An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self Assembly, (Academic Press: New York, 1991).Google Scholar
3. Husseman, M., M. et al., Angew. Chem. Int. Ed. Engl. 38, 647 (1999); R. Shah, et al., Macromolecules 33, 597 (2000); N. L. Jeon, Appl. Phys. Lett. 75, 4201 (1999); N. Kim et al, Macromolecules 33, 3793 (2000); B. de Boer et al., Macromolecules 33, 349 (2000); P. Ghosh, et al., Macromolecules 34, 1230 (2001); D. M. Jones and W. T. S. Huck, Adv. Mater. 13, 1256 (2001); J. Hyun and A. Chilkoti, Macromolecules 34, 5644 (2001).Google Scholar
4. Chaudhury, M. K., Whitesides, G. M., Science 256, 1539 (1992).Google Scholar
5. Efimenko, K., Genzer, J., Adv. Mater. 13, 1560 (2001).Google Scholar
6. Fuierer, R. R. et al, Adv. Mater. 14, 154 (2002).Google Scholar
7. Huang, X., Doneski, L. J., Wirth, M. J., Chemtech 19, (Dec 1998), 19; Anal. Chem. 70, 4023 (1998); X. Huang, M. J. Wirth, Macromolecules 32, 1694 (1999).Google Scholar
8. Wu, T., Efimenko, K., Genzer, J., Macromolecules 34, 684 (2001).Google Scholar
9. Stöhr, J., NEXAFS Spectroscopy (Springer-Verlag, Berlin, 1992).Google Scholar
10. Chaudhury, M. K., Owen, M. J., J. Phys. Chem. 97, 5722 (1993); D. L. Allara, A. N. Parikh, E. Judge, J. Chem. Phys. 100, 1761 (1994).Google Scholar