Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T17:55:51.809Z Has data issue: false hasContentIssue false

PMODTM-based Direct Thin Film Imaging, DTFITM, on Flexible Substrates

Published online by Cambridge University Press:  15 February 2011

Paul J. Roman Jr
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Harold O. Madsen
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Seigi Suh
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Leo G. Svendsen
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Shyama P. Mukherjee
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Aleta Jamora
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Michael A. Fury
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Katy Ip
Affiliation:
DuPont EKC Technology 2520 Barrington Ct., Hayward CA 94545
Get access

Abstract

PMOD (Photochemical Metal Organic Deposition)-based DTFI (Direct Thin Film Imaging) methodology is a demonstrated means for patterning organic materials on flexible (plastic) substrates. This process is used to pattern 1-micron features at an aspect ratio of 8:1 using contact lithography. Use of oxygen plasma RIE etch to transfer the hard mask pattern to the organic material allows for good sidewall angle control. High etch selectivity between the novolac polymer and PMOD TiOX hard mask (< 800:1) makes the use of very thin hard masks (∼ 200 angstroms) to pattern thick organic films (<10 microns) possible. Selective removal of the PMOD TiOX (TiO2) hard mask makes this process amenable to patterning of functional organic structures fabricated from materials chosen for their desired properties (e.g., glass transition temperature (Tg), etch resisitance, optical properties, mechanical properties, etc.) not their ability to be photopatterned (e.g., photoresist).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rogers, J.A. et al., PNAS 98, 48354840 (2001).Google Scholar
2. Sirringhaus, H. et al., Science 290, 21232126 (2000).Google Scholar
3. Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Hatters, M., Leeuw, D. M. de, Appl. Phys. Lett. 73, 108110 (1998).Google Scholar
4. Seeger, D., Tulipe, D. La, Kunz, R., Graza, C., Hanratty, H., IBM J. Res & Dev. 41, 105–18 (1997).Google Scholar
5. Hill, R. H., Avey, A., Blair, S., Gao, M., Palmer, R., Mater. Chem. and Physics 43, 233237 (1996).Google Scholar
6. Hill, R. H., Blair, S. L., Polymeric Materials Science and Engineering 77, 458459 (1998).Google Scholar
7. Mukherjee, S. P., Madsen, H. O., Roman, P. J., Svendsen, L. G., Fury, M. A., Barstow, S. J., Jeyakumar, A. Henderson, C. L. “High dielectric constant metal oxide films via photochemical metal organic deposition (PMOD) process” presented at 202nd Meeting of the Electrochemical Society, Oct.20-24 2002; to be published in “Proceedings of First International Symposium of High Dielectric Constant Materials” Electrochemical Society (2002).Google Scholar