Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-14T13:02:58.124Z Has data issue: false hasContentIssue false

Poly(3-hexythiophene)/multi-walled carbon nanotube composites: electrochemical and optical characterization

Published online by Cambridge University Press:  01 February 2011

Hállen D. R. Calado
Affiliation:
hallendaniel@yahoo.com.br, UFMG, Quimica, Belo Horizonte, MG, Brazil
Marcelo Valadares
Affiliation:
mvaladares@fisica.ufmg.br, UFMG, Fisica, Belo Horizonte, MG, Brazil
Anthony W. Musumeci
Affiliation:
a-musumeci@hotmail.com, QUT, SCPS, Brisbane, Queensland, Australia
Eric R. Waclawik
Affiliation:
e.waclawik@qut.edu.au, QUT, SCPS, Brisbane, Queensland, Australia
Luiz A. Cury
Affiliation:
cury@fisica.ufmg.br, UFMG, Fisica, Belo Horizonte, MG, Brazil
Glaura Goulart Silva
Affiliation:
cury@fisica.ufmg.br, UFMG, Fisica, Belo Horizonte, MG, Brazil
Get access

Abstract

Carbon nanotubes (CNT) / conjugated polymer composites have been used for the preparation of thin film-modified electrodes. Thin, short, multi-walled CNT (MWNT) (purity higher than 95%) was completely coated by regioregular poly(3-hexylthiophene) (P3HT) through precipitation of a mixture of both in the non-solvent methanol. This work reports the electrochemical and optical characterization of P3HT and composites after dissolution in xylene and spin casting of films with thickness <1 micrometer. Cyclic voltammetry showed that all samples were characterized by a semi-reversible behavior. The samples with 0% and 2% of MWNT, for instance, present anodic peak potential at +0.67 and +0.68V respectively when cycling at 100 mV/s. Optical properties, such as optical absorption and photoluminescence (PL), have been investigated. The samples showed maximum of absorption at ˜530 nm and intense PL in the orange. PL spectra of nanocomposites exhibited a new band at lower energy characteristic of a structure with higher conjugation length when compared to P3HT.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Braun, D., Materials Today (2002) 5, 32.Google Scholar
2. Reese, C., Roberts, M., Ling, M. and Bao, Z., Materials Today (2004) set, 20.Google Scholar
3. Sirringhaus, H., Tessler, N., Friend, R.H., Science (1998) 280, 1741.Google Scholar
4. Sariciftci, N. S., Materials Today (2004) 7, 9, 36.Google Scholar
5. Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., et al., Nature (1999), 401, 685.Google Scholar
6. Majeswski, L. A. and Grell, M., Synthetic Metals (2005) 151, 175.Google Scholar
7. Dicker, G., Savenije, T.J., Huisman, B-H, Leeuw, D.M., Haas, M.P. and Warman, J.M., Synthetic Metals (2003), 137, 863.Google Scholar
8. Musumeci, A.W., Silva, G.G., Liu, J-W, Martens, W.N. and Waclawik, E.R., Polymer (2007) 48, 1667.Google Scholar
9. Kuila, B.K., Malik, S., Batabyal, S.K. and Nandi, A.K., Macromolecules (2007) 40, 278.Google Scholar
10. Du, F.M., Scogna, R.C., Zhou, W., Brand, S., Fisher, J.E., Winey, K.I., Macromolecules (2004) 37, 9048 Google Scholar
11. Yang, H., Shin, T.J., Yang, L., Cho, K., Ryu, C.Y., Bao, Z., Adv. Funct. Materials (2005) 15, 671 Google Scholar
13. Kondratév, V.V., Tolstopyatova, E. G., Trofimova, Ya. V. and Malev, V. V., Russian Journal o Electrochemistry, (2003) 39, 9, 109.Google Scholar
14. Tourilon, G., Garnier, F., Journal Electroanalytical Chemistry, (1994) 161, 51 Google Scholar
15. Heinze, J., Bilger, R., Meerholz, K., Bunsen-Ges, Ber., Phys. Chem. (1998) 92, 1266 Google Scholar
16. Zotti, G., Schiavon, G., Synthetic Metals (1989) 31, 347 Google Scholar
17. Chao, F., Costa, M., Synthetic Metals (1984) 161, 407 Google Scholar
18. Bard, A.J., and Faulkner, L.R., Electrochemical Methods, Wiley, New York, 1981.Google Scholar
19. Roncali, J. and F., Garnier, New J. Chem. (1996) 4–5, 237 Google Scholar
20. Agüí, L., Penã-Farfal, C., Yáñez-Sedeño, P., Pingarrón, J. m., Electrochimica Acta (2007) 79467952.Google Scholar
21. Trznadel, M., Pron, A., Zagorska, M., Chrzaszcz, R. and Pielichowski, J., Macromolecules (1998) 31, 5051.Google Scholar
22. Patrício, P.S.O., Calado, H.D.R., Oliveira, F.A.C., Righi, A., Neves, B. R. A., Silva, G.G. and Cury, L.A. J. of Physics: Condensed Matter J. Phys., (2006) 18, 7529.Google Scholar
23. Valadares, M., Silvestre, I., Calado, H. D. R., Neves, B. R. A., Guimarães, P. S. S. and Cury, L. A., Journal of Applied physics (2008) 104, 043106.Google Scholar