Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-16T03:06:28.887Z Has data issue: false hasContentIssue false

Polycrystalline Silicon Layers for Shallow Junction Formation: Phosphorus Diffusion from In Situ Spike-Doped Chemical Vapor Deposited Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

D. Krüger
Affiliation:
Institute of Semiconductor Physics, W.-Korsing-Str.2, PO Box 409 D-15204 Frankfurt (Oder), Germany
J. Schlote
Affiliation:
Institute of Semiconductor Physics, W.-Korsing-Str.2, PO Box 409 D-15204 Frankfurt (Oder), Germany
W. Röpke
Affiliation:
Institute of Semiconductor Physics, W.-Korsing-Str.2, PO Box 409 D-15204 Frankfurt (Oder), Germany
R. Kurps
Affiliation:
Institute of Semiconductor Physics, W.-Korsing-Str.2, PO Box 409 D-15204 Frankfurt (Oder), Germany
Ch. Quick
Affiliation:
Institute of Semiconductor Physics, W.-Korsing-Str.2, PO Box 409 D-15204 Frankfurt (Oder), Germany
Get access

Abstract

Shallow and lateral homogeneous delineated n+p-junctions were formed utilizing solid source diffusion from a deposited amorphous silicon layer with an in situ imbedded ultrathin phosphorus-rich zone. SIMS, AES, and TEM investigations were carried out to analyze the dopant behavior in correlation to morphological and structural changes during subsequent heat treatments. After heat treatments up to 950°C the layer remained flat, surface roughness was found to be less than 3 nm. Dopant pile up at the Si-layer/Si-substrate interface was observed and interpreted on the basis of segregation phenomena. From the time dependence the P segregation-pile-up was found to be diffusion limited except for a small starting period. The dopant concentration in the Si-substrate drops down over more than 2 orders of magnitude in a thickness range less than 20 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Rost, I. R. C., Ashburn, P., IEEE Trans. Electron Dev., ED–39, 1717 (1992).Google Scholar
[2] Probst, V., Schaber, H., Mitwalsky, A., Kabza, H., Hoffmann, B., Maex, K., van den hove, L., J. Appl. Phys., 69 ,3 (1991).Google Scholar
[3] Park, K., Batra, S., Banerjee, S., Lux, G., Smith, T. C., J. Appl. Phys., 70(3), 1397 (1991).CrossRefGoogle Scholar
[4] Tang, E. T., IEDM 89, Washington, N.Y., IEEE, p. 39 (1989).Google Scholar
[5] Kern, W., Puotinen, D., RCA Rev., 31, 187 (1970).Google Scholar
[6] Kamins, T., “Polycrystalline silicon for Integrated circuit applications”, Kluwer, Boston (1988).Google Scholar
[7] Swaminathan, B., Saraswat, K. C., Dutton, R. W., Kamins, T. I., Appl. Phys. Lett., 40, 795 (1982).CrossRefGoogle Scholar
[8] Swaminathan, B., Demoulin, E., Sigmon, T. W., Dutton, R. W., Reif, R., J. Electrochem. Soc, 127, 2227 (1980).CrossRefGoogle Scholar
[9] O’Neill, A. G., Hill, C., King, J., Please, C., J. Appl. Phys., 64, 167 (1988).Google Scholar
[10] Hoyt, J. L., Crabbe, E. F., Pease, R. F. W., Gibbons, J. B., Marshall, A. F., Electrochem, J.. Soc, 135, 1773 (1988).Google Scholar