Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T08:31:11.788Z Has data issue: false hasContentIssue false

Preparation of AlAsSb and Mid-Infrared (3–5μm) Lasers By Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

A. A. Allerman
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
R. M. Biefeld
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
S. R. Kurtz
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
Get access

Abstract

Mid-infrared (3–5 μm) infrared lasers and LEDs are being developed for use in chemical sensor systems. As-rich, InAsSb heterostructures display unique electronic properties that are beneficial to the performance of these midwave infrared emitters. We have grown AlAs1−xSbx epitaxial layers by metal-organic chemical vapor deposition using trimethylamine (TMAA) or ethyldimethylamine alane (EDMAA), triethylantimony (TESb) and arsine. We examined the growth of AlAsl−xSbx using temperatures of 500 to 600 °C, pressures of 70 to 630 torr, V/III ratios of 1–27, and growth rates of 0.3 to 2.7 μm/hour in a horizontal quartz reactor. The semi-metal properties of a p-GaAsSb/n-InAs heterojunction are utilized as a source for injection of electrons into the active region of lasers. A regrowth technique has been used to fabricate gain-guided lasers using AlAs1−xSbx for optical confinement with either a strained InAsSb/InAs multi-quantum well (MQW) or an InAsSb/InAsP strained layer superlattice (SLS) as the active region. Under pulsed injection, the InAsSb/InAs MQW laser operated up to 210K with an emission wavelength of 3.8–3.9 μm. Under pulsed optical pumping, the InAsSb/InAsP SLS operated to 240K with an emission wavelength of 3.5–3.7 μm. LED emission has been observed with both active regions in both p-n junction and semi-metal injection structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Choi, H. K. and Turner, G. W., Appl. Phys. Lett. 67, 332 (1995).Google Scholar
[2] Zhang, Y-H., Appl. Phys. Lett. 66, 118 (1995).Google Scholar
[3] Kurtz, S. R., Biefeld, R. M., Alleman, A. A., Howard, A. J., Crawford, M. H., and Pelczynski, M. W., Appl. Phys. Lett. 68, 1332 (1996).Google Scholar
[4] Biefeld, R.M., Hills, C.R., and Lee, S.R., J. Crys. Growth 91, 515 (1988).Google Scholar
[5] Biefeld, R. M., Baucom, K. C., and Kurtz, S. R., J. Crystal Growth, 137, 231 (1994).Google Scholar
[6] Follstaedt, D. M., Biefeld, R. M., Kurtz, S. R., and Baucom, K. C., J. Electronic Mater. 24, 819 (1995).Google Scholar
[7] Kurtz, S. R., Dawson, L. R., Biefeld, R. M., Follstaedt, D. M., and Doyle, B. L., Phys. Rev. B, 46, 1909(1992).Google Scholar
[8] Kurtz, S. R., Biefeld, R. M., and Howard, A. J., Appl. Phys. Lett., 67, 3331 (1995).Google Scholar
[9] Allerman, A. A., Biefeld, R. M., and Kurtz, S. R., Appl. Phys. Lett., 69, 465 (1996).Google Scholar
[10] Miles, R. H. (private communication).Google Scholar