Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T01:15:12.263Z Has data issue: false hasContentIssue false

Probing strain and microstrain in nanostructured thin layers.

Published online by Cambridge University Press:  12 April 2012

Gianguido Baldinozzi
Affiliation:
SPMS, Equipe Matériaux Fonctionnels pour l’Energie, CNRS, Ecole Centrale Paris, Châtenay-Malabry, France; DEN, DMN, CEA, CE Saclay, Gif-sur-Yvette, France
David Simeone
Affiliation:
SPMS, Equipe Matériaux Fonctionnels pour l’Energie, CNRS, Ecole Centrale Paris, Châtenay-Malabry, France; DEN, DMN, CEA, CE Saclay, Gif-sur-Yvette, France
Dominique Gosset
Affiliation:
SPMS, Equipe Matériaux Fonctionnels pour l’Energie, CNRS, Ecole Centrale Paris, Châtenay-Malabry, France; DEN, DMN, CEA, CE Saclay, Gif-sur-Yvette, France
Jean-Francois Bérar
Affiliation:
Institut Neel, CNRS, Grenoble, France.
Get access

Abstract

The analysis of the structures and microstructures of nanostructured thin layers can be performed using laboratory grazing incidence diffraction, provided accurate corrections are performed to handle the instrumental broadening effects related to the experiment geometry for an impinging beam close to the critical angle. Implementing these corrections in Rietveld refinement software allows the accurate extraction of quantitative relevant information about the structure (strain and atomic positions) and the microstructure (crystallite size and microstrain), selectively probing the material on a depth of few nanometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanchez, C., Grosso, D., Boissiere, C., Laberty-Robert, C. & Nicole, L., Chem. Mater, (2008) 20, 682737 Google Scholar
2. For instance, size quantization effects may occur in semiconducting nanoparticles, where it might interesting to match the particle size and the exciton diameter and/or tune the energy gap between the valence and the conduction band to produce a blue shift in the optical absorption. In magnetic or ferroelectric nanocrystals, the particle size of the oxide can be reduced to critically match that of a single ferro domain in which the magnetic or dipole moments are aligned: the magnetization or the polarization is then no longer nonlinear in the presence of an applied field and hysteresis loops disappear.Google Scholar
3. McHale, J. M., Auroux, A., Perrotta, A. J., & Navrotsky, A., Science (1997) 277, 788791.Google Scholar
4. HRTEM and SAED (selected area electron diffraction) can actually distinguish the individual crystallites but they are extremely time-consuming methods.Google Scholar
5. Simeone, D., Baldinozzi, G., Gosset, D., Zalczer, G. & Bérar, J. F., J. Appl. Cryst. (2011) 44, 12051210 Google Scholar
6. Bérar, J. F.. & Garnier, P.. NIST Special Publication, (1992) 846, 212 Google Scholar
7. Bérar, J. F. & Baldinozzi, G., IUCR-CPD Newsletter (1998) 20, 35 Google Scholar
9. Goodman, J. W., Introduction to Fourier Optics, 3rd Ed. (2004) Roberts & Company Publ.Google Scholar
10. see for instance Chapter 3 in Als-Nielsen, J. & McMorrow, D., Elements of modern x-ray physics, 2nd Ed, (2011) J. Wiley & Sons Ltd Google Scholar
11. When α << αc the two waves get out of phase and the evanescent wave vanishes. For α >> αc the reflected wave amplitude vanishes and the evanescent wave amplitude then matches the incident wave. Finite absorption smears the kink at α = αc decreasing the amplification of the evanescent wave.>+αc+the+reflected+wave+amplitude+vanishes+and+the+evanescent+wave+amplitude+then+matches+the+incident+wave.+Finite+absorption+smears+the+kink+at+α+=+αc+decreasing+the+amplification+of+the+evanescent+wave.>Google Scholar
12. Scherrer, P., Nachrichten Gesellschaft der Wissenschaften zu Göttingen (1918), 26 Sep, 98-100.Google Scholar
13. Stokes, A. R. & Wilson, A. J. C., Proc. Phys. Soc (1944) 56, 174181 Google Scholar
14. Hall, W. H., Proc. Phys. Soc. A (1949) 62, 741743 Google Scholar
15. Warren, B. E., & Averbach, B. L., J. Appl. Phys. (1950) 21, 595599.Google Scholar
16. Ida, T., Shimazaki, S., Hibino, H. & Toraya, H., J. Appl. Cryst. (2003) 36, 11071115 Google Scholar
17. Stephens, P. W., J. Appl. Cryst. (1999) 32, 281289 Google Scholar