Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-17T20:12:03.085Z Has data issue: false hasContentIssue false

Pt and Pd Silicides and Pd Germanide as Contact Metallizations for GaAs

Published online by Cambridge University Press:  22 February 2011

E. D. Marshall
Affiliation:
Dept. of Electrical Engineering and Computer Sciences, University of California-San Diego, La Jolla, CA, 92093,
C. S. Wu
Affiliation:
Dept. of Electrical Engineering and Computer Sciences, University of California-San Diego, La Jolla, CA, 92093,
D. M. Scott
Affiliation:
Dept. of Electrical Engineering and Computer Sciences, University of California-San Diego, La Jolla, CA, 92093,
S. S. Lau
Affiliation:
Dept. of Electrical Engineering and Computer Sciences, University of California-San Diego, La Jolla, CA, 92093,
T. F. Kuech
Affiliation:
IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY, 10598.
Get access

Abstract

Refractory metal silicides have been shown to form stable Schottky barriers on GaAs up to an annealing temperature of ∼850°C. In this study, the metallurgical and electrical stability of near noble metal (Pd and Pt) silicide contacts to GaAs have been investigated. It is observed that Pd and Pt silicides are metallurgically more stable than Pd and Pt alone on GaAs. A correlation between the stability of silicide contacts and the heat of formation of the silicides normalized to per metal atom is found, thus allowing the prediction of contact stability of other silicides on GaAs. We have also investigated the feasibility of using solid-phase epitaxy (SPE) to grow a highly doped Ge epitaxial layer on GaAs to form a non-alloyed ohmic contact. This approach of forming a Ge/GaAs heterojunction alleviates the high vacuum requirement of MBE techniques. Our preliminary results indicate that relatively low contact resistivities can be obtained by SPE using the Ge-Sb-Pd system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Morgan, D.V., “Interdiffusion of Metal Films on GaAs and InP”, in Reliability and Degradation Semiconductor Devices and Circuits, ed. Howes, M.J and Morgan, D.V., Wiley (1981).Google Scholar
[2] Yokoyama, N., Ohnishi, T., Odani, K., Onodera, H., and Abe, M., IEDM, 80 (1981).Google Scholar
[3] Tseng, W. F. and Christou, A., IEDM, 174 (1982).Google Scholar
[4] Piotrowska, A., Guivarch, A., and Pelous, G., Solid State Electronics, 26, 179(1983).Google Scholar
[5] Braslau, N., Thin Solid Films, 104, 391(1983).Google Scholar
[6] Stall, R., Wood, C. E. C., Board, K., and Eastman, L. F., Electronics Letters, 15, 800(1979).Google Scholar
[7] Lau, S. S., Canali, C., Liau, Z. L., Nakamura, K., Nicolet, M.-A., Blattner, R. J., and Evans, C. A. Jr., Appl. Phys. Lett., 28, 148(1976).Google Scholar
[8] Unpublished data, UCSD.Google Scholar
[9] Fontaine, C., Okumura, T., and Tu, K. N., J. Appl. Phys., 54(3), 14041412 (1983).Google Scholar
[10] Kumar, V., J. Phys. Chem. Solids, 36, 535(1975).CrossRefGoogle Scholar
[11] Sinha, A. K., Appl. Phys. Lett., 26, 171(1975).CrossRefGoogle Scholar
[12] Sinha, A. K. and Poate, J. M., Appl. Phys. Lett., 23, 666(1973).CrossRefGoogle Scholar
[13] Oelhafen, P., Freeouf, J. L., Kuan, T. S., Jackson, T. N., and Batson, P. E., J. Vac. Sci. Tech., Vol. B-1, 588(1983).Google Scholar
[14] Olowolafe, J. O., Ho, P. S., Hovel, H. J., Lewis, J. E., and Woodall, J. M., J. Appl. Phys., 50, 955(1979).Google Scholar
[15] Oustry, A., Caumont, M., Escaut, A., Martinez, A., and Toprasertpong, B. Thin Solid Films, 79, 251(1981).Google Scholar
[16] Zeng, X. F. and Chung, D. D. L., J. Vac. Sci. Technol., 21, 611(1982).Google Scholar
[17] Vytatkin, A. P., Masimova, N. K., Panova, N. M., Pekarskii, E. N., Romanova, I. D., and Yakubenya, M. P., Sov. Phys. J., 24, 295(1981).Google Scholar
[18] Nicolet, M.-A. and Lau, S. S., “Formation and Characterization of Transition Metal Silicides“, in VLSI Electronics.: Microstructure Science, Norman Einspuch, Series Editor, Vol. 6, Materials and Process Characterization, Graydon Larrabee, Guest Editor, Academic Press (1983).Google Scholar
[19] Nicollian, E. H. and Sinha, A. K., “Effects of Interfacial Reactions on the Electrical Characteristics of Metal-Semiconductor Contacts”, in Thin Films-Interdiffusion and Reactions, ed. Poate, J. M., Tu, K. N., and Mayer, J. W., Wiley (1978).Google Scholar
[20] Tsaur, B. Y. pioneered this concept of SPE Ge/Pd/GaAs at MIT Lincoln Labs, 1983.Google Scholar
[21] Grinolds, H. R. and Robinson, G. Y., Solid State Electronics, 23, 973(1980).Google Scholar
[22] Sinha, A. K., Smith, T. E., and Levinstein, H. J., IEEE Trans. on Electron Devices, ED-22, 218(1975).CrossRefGoogle Scholar
[23] Anderson, W. T. Jr., Christou, A., and Davey, J. E., IEEE J. Solid-State Circuits, SC-13, 430(1978).CrossRefGoogle Scholar