Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T01:14:53.735Z Has data issue: false hasContentIssue false

Quasi-static and Oscillatory Indentation in Linear Viscoelastic Solids

Published online by Cambridge University Press:  01 February 2011

Yang-Tse Cheng
Affiliation:
yang.t.cheng@gm.com, General Motors R&D Center, Materials and Processes Lab., MS: 480-106-224, 30500 Mound Road, Warren, MI, 48090, United States, 586-986-4763, 586-986-3091
Che-Min Cheng
Affiliation:
zhengzm@imech.ac.cn, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080, China, People's Republic of
Get access

Abstract

Instrumented indentation is often used in the study of small-scale mechanical behavior of “soft” matters that exhibit viscoelastic behavior. A number of techniques have been used to obtain the viscoelastic properties from quasi-static or oscillatory indentations. This paper summarizes our recent findings from modeling indentation in linear viscoelastic solids. These results may help improve methods of measuring viscoelastic properties using instrumented indentation techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pethica, J. B. and Oliver, W. C., Phys. Scr. T19, 61 (1987).Google Scholar
2 Oliver, W. C. and Pharr, G. M., J. Mat. Res. 7, 1564 (1992).Google Scholar
3 Loubet, J. L., Lucas, B. N., and Oliver, W. C., in International Workshop on Instrumental Indentation, San Diego, CA, April 1995, Smith, D.T. (ed.), 31 (1995).Google Scholar
4 Syed, S. A., Wahl, K. J., and Colton, R. J., Rev. Sci. Instrum. 70, 2408 (1999).Google Scholar
5 Shimizu, S., Yanagimoto, T., Sakai, M., J. Mat. Res. 14, 4075 (1999).Google Scholar
6 Burnham, N. A., Baker, S. P., and Pollock, H. M., J. Mat. Res. 15, 2006 (2000).Google Scholar
7 Cheng, L. et al. , J. Poly. Sci.: Part B: Poly. Phys. 38, 10 (2001).Google Scholar
8 Oyen, M. L. and Cook, R. F., J. Mat. Res. 18, 139 (2003).Google Scholar
9 VanLandingham, M. R., J. Res. Nat. Inst. Stand. Tech. 108, 249 (2003).Google Scholar
10 Fischer-Cripps, A.C., Nanoindentation, 2nd edition (Springer-Verlag, New York, 2004).Google Scholar
11 Huang, G., Wang, B. and Lu, H., Mech. Time-Dependent Mater. 8, 345 (2004).Google Scholar
12 Ngan, A.H.W., Wang, H.T., Tang, B., Sze, K.Y., Int. J. Solids and Struct. 42, 1831 (2005).Google Scholar
13 Odegard, G. M., Gates, T. S. and Herring, H. M., Exp. Mech. 45, 130 (2005).Google Scholar
14 Cheng, Y.-T. and Cheng, C.-M., Mat. Sci. Eng. R 44, 91 (2004).Google Scholar
15 Cheng, Y.-T. and Cheng, C.-M., J. Mat. Res. 20, 1046 (2005).Google Scholar
16 Cheng, Y.-T. and Cheng, C.-M., Materials Science and Engineering A 409, 93 (2005).Google Scholar
17 Cheng, Y.-T. and Cheng, C.-M., Appl. Phys. Lett. 87, 111914 (2005).Google Scholar
18 Cheng, Y.-T., Ni, W., and Cheng, C.-M., J. Mat. Res. 20, 3061 (2005).Google Scholar
19 Cheng, Y.-T., Ni, W., and Cheng, C.-M., Phys. Rev. Lett. 97, 075506 (2006).Google Scholar
20 Lee, E. H., Quarterly Appl. Math. 13, 183 (1955).Google Scholar
21 Radok, J. R. M., Quarterly Appl. Math. 15, 198 (1957).Google Scholar
22 Lee, E. H., Radok, J. R. M., J. Appl. Mech. 27, 438 (1960).Google Scholar
23 Hunter, S. C., J. Mech. Phys. Solids 8, 219 (1960).Google Scholar
24 Graham, G. A. C., Int. J. Eng. Sci. 3, 27 (1965).Google Scholar
25 Graham, G. A. C., Int. J. Eng. Sci. 5, 495 (1967).Google Scholar
26 Ting, T. C. T., J. Appl. Mech. 33, 845 (1966).Google Scholar
27 Ting, T. C. T., J. Appl. Mech. 35, 248 (1968).Google Scholar