Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T19:54:41.977Z Has data issue: false hasContentIssue false

Removal of 6H-SiC substrate influence when evaluating GaN thin film properties via x-ray

Published online by Cambridge University Press:  21 March 2011

Edward A. Preble
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Peter Q. Miraglia
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Amy M. Roskowski
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Sven Einfeldt
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Robert F. Davis
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Get access

Abstract

Non-uniformity in GaN thin films deposited on 6H-SiC can make determining the effects of growth variables difficult. Results presented in this work show the effects of the SiC substrates on the GaN films, and how to correct for these effects to obtain meaningful data about the properties of the thin film rather than the substrate underneath. Rocking curve values of GaN thin films are found to track almost 1:1 with the values of the underlying SiC. Plotting rocking curves with respect to the substrate, as well as a variable of importance can therefore yield more meaningful and reliable comparisons instead of plotting the data for the variable alone. This procedure is used to demonstrate the effects of thickness and AlN and AlGaN buffer layers on GaN thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heying, B., Wu, X.H., Keller, S., Li, Y., Kapolnek, D., Keller, B.P., DenBaars, S.P., and Speck, J.S., Appl. Phys. Lett. 68, 5 (1996).Google Scholar
2. Metzger, T., Höpler, R., Born, E., Ambacher, O., Stutzmann, M., Stömmer, R., Schuster, M., Göbel, H., Christiansen, S., Albrecht, M., and Strunk, H.P., Phil. Mag. A 77, 1013 (1998).Google Scholar
3. Srikant, V., Speck, J.S., and Clarke, D.R., J. Appl. Phys, 82 (1997) 42864295.Google Scholar
4. Glass, R.C., Kjellberg, L.O., Tsvetkov, V.F., Sundgren, J.E., and Janzen, E., Journal of Crystal Growth 132 (1993) 504512.Google Scholar
5. Heinke, H., Kirchner, V., Einfeldt, S., and Hommel, D., Phys. Stat. Sol. (a) 176, 391 (1999).10.1002/(SICI)1521-396X(199911)176:1<391::AID-PSSA391>3.0.CO;2-I3.0.CO;2-I>Google Scholar
6. Mathis, S.K., Romanov, A.E., Chen, L.F., Beltz, G.E., Pompe, W., and Speck, J.S., Phys. Stat. Sol. (a) 179, 125 (2000).Google Scholar
7. Qian, W., Skowronski, M., Graef, M. De, Doverspike, K., Rowland, L.B., and Gaskill, D.K, Appl. Phys. Lett, 66 (10) 1995.Google Scholar
8. Ning, X.J., Chien, F.R., Pirouz, P., Yang, J.W., Khan, M. Asif, J. Mater. Res. V11, (1996) p580.Google Scholar
9. Wu, X. H., Brown, L. M., Kapolnek, D., Keller, S., Keller, B., DenBaars, S. P., and Speck, J. S., J. Appl. Phys, 80 (1996) p. 3228.Google Scholar
10. Nikitina, I.P., Sheglov, M.P., Melnik, Y.V., Irvine, K.G., and Dmitriev, V.A., Diamond and Related Materials, vol 6, no. 10, (1997).Google Scholar