Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-27T01:22:54.924Z Has data issue: false hasContentIssue false

RTP-CVD of Si Materials and Devices for ULSI Applications

Published online by Cambridge University Press:  22 February 2011

D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
T. Y. Hsieh
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
K. H. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

Rapid thermal processing chemical vapor deposition (RTP-CVD) has received considerable attention because of its ability to reduce many of the processing problems associated with thermal exposure in conventional chemical vapor deposition, while still retaining the ability to grow high quality epitaxial layers. In this paper, the principles of the RTP-CVD system are described, followed by results of experiments on in-situ cleaning, undoped Si epitaxy and in-situ doped Si epitaxy, and selective Si deposition using oxide masks. Our results show that RTP-CVD is capable of growing high quality, epitaxial layers with sharp, dopant transition profiles. Selective deposition was achieved without the use of HC1. We also studied the growth and characterization of GexSi1−x films for optical waveguiding.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gibbons, J. F., Gronet, C. M., and Williams, K. E., Appl. Phys. Lett., 47, 721 (1985).Google Scholar
2 Green, M. L., Brasen, D., Luftman, H., and Kannan, V. C., J. Appl. Phys., 65, 2558 (1989).CrossRefGoogle Scholar
3 Lee, S. K., Ku, Y. H., and Kwong, D. L., Appl. Phys. Lett., 54, 1775 (1989).Google Scholar
4 Gronet, C. M., King, C. A., Opyd, W., Gibbons, J. F., Wilson, S. D., and Hull, R., J. Appl. Phys. 61, 2407 (1987).Google Scholar
5 Jung, K. H., Kim, Y. M., and Kwong, D. L., Appl. Phys. Lett., 56 (18), 1775 (1990).Google Scholar
6 Lee, S. K., Ku, Y. H., Hsieh, T. Y., Jung, K. H., and Kwong, D. L., Appl. Phys. Lett., 57, 273 (1989).Google Scholar
7 Meyerson, B. S., Appl. Phys. Lett., 48, 797 (1986).Google Scholar
8 Smith, F. W. and Ghidini, G., J. Electrochem. Soc, 129, 1300 (1982).Google Scholar
9 Ghidini, G. and Smith, F. W., J. Electrochem. Soc, 131, 2924 (1984).Google Scholar
10 Silvestri, V. J., Nummy, K., Ronsheim, P., Bendernagel, R., Kerr, D., Phan, V. T., Borland, J. O., and Hann, J., J. Electrochem. Soc, 137, 2323 (1990).Google Scholar
11 Bloem, J. and Claassen, W., Philips Tech. Rev., 60 (1984).Google Scholar
12 Van Wijnen, P. J. and Gardner, R. D., IEEE Electron Dev. Lett. EDL-11, 149 (1990).Google Scholar
13 Olson, G. L. and Roth, J. A., Materials science reports, 3, 1 (1988).Google Scholar
14 Hoyt, J. L., Crabbe, E. F., Pease, R. F. W., Gibbons, J. F., and Marshall, A. F., J. Electrochem. Soc, 135, 1773 (1988).Google Scholar
15 Comfort, J. H. and Reif, R., Proceedings of the Tenth International Conference on Chemical Vapor Deposition, PV 87–8 (The Electrochemical Society, Pennington, 1987), p. 265.Google Scholar
16 Rai-Choudhury, P. and Schroder, D., J. Electrochem. Soc, 120, 664 (1973).Google Scholar
17 People, R., IEEE J. Quantum Electonics QE-22, 1696 (1986).Google Scholar
18 Soref, R. A., Namavar, F., and Lorenzo, J. P., Proc SPIE 1177, session 4, Boston, USA, 5–8 Sep 1989.Google Scholar
19 Schüppert, B., Schmidtchen, J., and Petermann, K., Electronic Lett. 25, 1500 (1989).Google Scholar
20 Austin, M. W. and Kemeny, P. C., ECIO '85, Springer-Verlag, 140 (1985).Google Scholar