Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-15T02:40:19.502Z Has data issue: false hasContentIssue false

Sb-Based Mid-Infrared Diode Lasers

Published online by Cambridge University Press:  21 March 2011

C. Mermelstein
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
M. Rattunde
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
J. Schmitz
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
S. Simanowski
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
R. Kiefer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
M. Walther
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
J. Wagner
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
Get access

Abstract

In this paper we review recent progress achieved in our development of type-I GaInAsSb/AlGaAsSb quantum-well (QW) lasers with emission wavelength in the 1.74–2.34 μm range. Triple-QW (3-QW) and single-QW (SQW) diode lasers having broadened waveguide design emitting around 2.26 μm have been studied in particular. Comparing the two designs we have find that the threshold current density at infinite cavity length as well as the transparency current density scale with the number of QWs. Maximum cw operating temperature exceeding 50°C and 90°C has been obtained for ridge waveguide lasers emitting above and below 2 μm, respectively. Ridge waveguide diode lasers emitting at 1.94 μm exhibited internal quantum efficiencies in excess of 77%, internal losses of 6 cm−1, and threshold current density at infinite cavity length as low as 121 A/cm2 reflecting the superior quality of our diode lasers, all values recorded at 280 K. A high characteristic temperature TOof 179 K for the threshold current along with a value of T1 = 433 K for the characteristic temperature of the external efficiency have been attained for the 240–280 K temperature interval. Room temperature cw output powers exceeding 1.7 W have been demonstrated for broad area single element devices with highreflection/ antireflection coated mirror facets, mounted epi-side down. The latter result is a proof for the high power capabilities of these GaSb-based mid-ir diode lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Turner, G. W. and Choi, H. K., in Optoelectronic Properties of Semiconductors and Superlattices, edited by Manasreh, M. O., (Gordon and Breach, Amsterdam, 1997), p. 369, and references therein.Google Scholar
2. Garbuzov, D. Z., Martinelli, R. U., Lee, H., York, P. K., Menna, R. J., Connolly, J. C., and Narayan, S. Y., Appl. Phys. Lett. 69, 2006 (1996).Google Scholar
3. Turner, G. W., Choi, H. K., and Manfra, M. J., Appl. Phys. Lett. 72, 876 (1998).Google Scholar
4. Garbuzov, D. Z., Martinelli, R. U., Lee, H., Menna, R. J., York, P. K., DiMarco, L. A., Harvey, M. G., Matarese, R. J., Narayan, S. Y., and Connolly, J. C., Appl. Phys. Lett. 70, 2931 (1997).Google Scholar
5. Newell, T., Wu, X., Gray, A. L., Dorato, S., Lee, H., and Lester, L. F., IEEE Photon. Technol. Lett. 11, 30 (1999).Google Scholar
6. Yarekha, D. A., Glastre, G., Perona, A., Rouillard, Y., Genty, F., Skouri, E. M., Boissier, G., Grech, P., Joullie, A., Alibert, C., and Baranov, A. N., Electron. Lett. 36, 537 (2000).Google Scholar
7. Garbuzov, D. Z., Lee, H., Khalfin, V., Martinelli, R., Connolly, J. C., and Belenky, G. L., IEEE Photon. Technol. Lett. 11, 794 (1999).Google Scholar
8. Simanowski, S., Herres, N., Mermelstein, C., Kiefer, R., Schmitz, J., Walther, M., Wagner, J., and Weimann, G., J. of Crystal Growth 209, 15 (2000).Google Scholar
9. Simanowski, S., Mermelstein, C., Walther, M., Herres, N., Kiefer, R., Rattunde, M., Schmitz, J., Wagner, J., and Weimann, G., J. of Crystal Growth 227–228, 595 (2001).Google Scholar
10. Mermelstein, C., Simanowski, S., Mayer, M., Kiefer, R., Schmitz, J., Walther, M., and Wagner, J., Appl. Phys. Lett. 77, 1581 (2000).Google Scholar
11. Rattunde, M., Mermelstein, C., Simanowski, S., Schmitz, J., Kiefer, R., Herres, N., Fuchs, F., Walther, M., and Wagner, J., in Proc. of the 27th Int. Symp. on Compound Semiconductors, (Institute of Electrical and Electronics Engineers, Inc., USA, 2001) p. 437.Google Scholar
12. Krijn, M. P. C. M., Semicond. Sci. Technol. 6, 27 (1991).Google Scholar
13. Engelmann, R. W. H., Shieh, C-L., and Shu, C., in Quantum Well Lasers, edited by Zory, P. S. Jr., (Academic Press, San Diego, CA, 1993), p. 170.Google Scholar
14. Mc Ilroy, P. W. A., Kurobe, A., and Uematsu, Y., IEEE J. Quantum Electron. 21, 1958 (1985).Google Scholar
15. Garbuzov, D., Maiorov, M., Lee, H., Khalfin, V., Martinelli, R. U., and Connolly, J., Appl. Phys. Lett. 74, 2990 (1999).Google Scholar
16. Donetsky, D. V., Belenky, G. L., Garbuzov, D. Z., Lee, H., Martinelli, R. U., Taylor, G., Luryi, S., and Connolly, J. C., Electron. Lett. 35, 298 (1999).Google Scholar