Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T10:41:50.841Z Has data issue: false hasContentIssue false

Sm Doping Effects on Electrical Properties of Sol-Gel Derived SrBi2Ta 2O9 Films

Published online by Cambridge University Press:  11 February 2011

Eisuke Tokumitsu
Affiliation:
IT-21 Center, Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577, Japan Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
Masahito Kishi
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
Get access

Abstract

We have characterized (Sr,Sm)Bi2Ta 2O9 (SSBT) films fabricated by the sol-gel technique on Pt/Ti/SiO2/Si substrates. For ferroelectric-gate FET applications, a ferroelectric film which has a small remanent polarization and a relatively large coercive field is required. It is demonstrated that Sm doping in ferroelectric SBT films is effective to reduce the remanent polarization and enhance the coercive field. Sr0.5Sm0.2Bi2.2Ta2O9 films (150nm) crystallized at 850°C exhibits good electrical properties with a remanent polarization of 1.7 μC/cm2 and a coercive fields of 85 kV/cm. These values are suitable for ferroelectric-gate FET applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ross, I.M., US Patent 2791760 (1957).Google Scholar
2. Moll, J. L. and Tarui, Y., IEEE Trans. Electron Devices ED-10, 333 (1963).Google Scholar
3. Sugibuchi, K., Kurogi, Y. and Endo, N., J. Appl. Phys. 47, 2877 (1975).Google Scholar
4. Higuma, Y., Matsui, Y., Okuyama, M., Nakagawa, T. and Hamakawa, Y., Proc. 9th Conf. Solid State Devices, Tokyo 1977, Jpn. J. Appl. Phys. Suppl. 17–1, 209 (1978).Google Scholar
5. Tokumitsu, E., Nakamura, R. and Ishiwara, H., IEEE Electron Device Lett. EDL-18, 160(1997).Google Scholar
6. Hirai, T., Fujisaki, Y., Nagashima, K., Koike, H. and Tarui, Y., Jpn. J. Appl. Phys. 36 5908 (1997).Google Scholar
7. Tokumitsu, E., Fujii, G. and Ishiwara, H., Appl. Phys. Lett. 75, 575 (1999).Google Scholar
8. Tokumitsu, E., Fujii, G. and Ishiwara, H., Jpn. J. Appl. Phys. 39, 2125 (2000).Google Scholar
9. Nakao, Y., Nakamura, T., Kamisawa, A. and Takasu, H., Integr. Ferroelectr. 6, 23 (1995).Google Scholar
10. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Integr. Ferroelectr. 9, 179 (1995).Google Scholar
11. Fujimori, Y., Nakamura, T. and Kamisawa, A., Jpn. J. Appl. Phys. 38, 2285 (1999).Google Scholar
12. Noguchi, Y., Miyayama, M., Oikawa, K., Kamiyama, T., Osada, M. and Kakihana, M.: Intern. Conf. Applications of Ferroelectrics, Nara, paper 287, (2002).Google Scholar
13. Shimakawa, Y., Kubo, Y., Nakagawa, Y., Kamiyama, T., Asano, H. and Izumi, F., Appl. Phys. Lett. 74, 1904 (1999).Google Scholar