Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T22:00:23.534Z Has data issue: false hasContentIssue false

SOLID PHASE EPITAXIAL GROWTH OF Ge ON GaAs

Published online by Cambridge University Press:  28 February 2011

C.J. Palmstrom
Affiliation:
Bell Communications Research, Serin Physics Lab., Rutgers University, Box 849, Piscataway, N.J. 08854
G.J. Galvin
Affiliation:
Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, N.Y. 14853
S.A. Schwarz
Affiliation:
Bell Communications Research, 600 Mountain Avenue, Murray Hill, N.J. 07974
B.C. De Cooman
Affiliation:
Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, N.Y. 14853
J.W. Mayer
Affiliation:
Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, N.Y. 14853
Get access

Abstract

Solid phase epitaxial growth of electron beam evaporated Ge layers on unheated GaAs has been demonstrated. The amorphous Ge layers grow epitaxially on the GaAs surface during anneals at 400°C. A technique for growing these epitaxial layers without the need for in-situ heat treatment of the GaAs prior to Ge deposition is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stall, R., Wood, C.E.C., Board, K., and Eastman, L.F., Electron. Lett. J1, 800 (1979).CrossRefGoogle Scholar
2. Devlin, W.J., Wood, C.E.C., Stall, R. and Eastman, L.F., Solid-State Electronics 23,823 (1980).CrossRefGoogle Scholar
3. Anderson, W.T., Christou, A., and J.E. Davey,J. Appl. Phys. -4, 2998 (1978).CrossRefGoogle Scholar
4. Tseng, W.F., Davey, J.E., Christou, A., and Wilkens, B.R., Appl. Phys. Lett. 36, 435 (1980).CrossRefGoogle Scholar
5. Stall, R.A., Wood, C.E.C., Board, K., Dandekar, N., Eastman, L.F., and Devlin, J., J. Appl. Phys. 5Z,4062 (1981).CrossRefGoogle Scholar
6. Csepregi, L., KUllen, R.P., and Mayer, J.W., Solid State Communications 21, 1019 (1977).CrossRefGoogle Scholar
7. Grimaldi, M.G., M&enpa&, M., Paine, B.M., Nicolet, M.-A., Lau, S.S., and Tseng, W.F., J. Appl. Phys. 52, 1351 (1981).CrossRefGoogle Scholar
8. Palmstrom, C.J., presented at 9th. Symp. on Ion Sources and Ion-Assisted Technology, (Tokyo,1985).Google Scholar
9. Marshall, E.D., Wu, C.S., Scott, D.M., Lau, S.S., and Kuech, T.F., in Thin Films and Interfaces II, edited by Baglin, J.E.E., Campbell, D.R., and W.K. Chu (North Holland, New York, 1984), p. 63.Google Scholar
10.T. de Jong, Saris, F.W., Tamminga, Y., and Haisma, J., Appl. Phys. Lett. 28, 445 (1984).Google Scholar
11. Palmstrom, C.J. and Galvin, G.J., Appl. Phys. Lett. 47, 815 (1985).CrossRefGoogle Scholar
12. Williams, J.S. and Austin, M.W., Appl. Phys. Lett. 36, 994 (1980).CrossRefGoogle Scholar
13.Y.-K. Wang and Holloway, P.H., J. Vac. Sci. Technol. B2, 613 (1984).Google Scholar