Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T02:21:28.161Z Has data issue: false hasContentIssue false

Space Charge Layers in Polycrystalline Cerium Oxide

Published online by Cambridge University Press:  11 February 2011

Andreas Tschöpe*
Affiliation:
Universität des Saarlandes, Technische Physik, Gebäude 43B, 66041 Saarbrücken, Germany
Get access

Abstract

The effect of space charge layers in polycrystalline cerium oxide was analyzed by comparing experimental results of grain size-dependent electrical conductivity with theoretical models. Modeling included the calculation of space charge segregation of acceptor ions and of the effective electrical conductivity of polycrystalline cerium oxide in both the macroscopic and mesoscopic range of grain sizes. It is shown that an L-3 power law for the electronic conductivity in the nm-regime is characteristic for the equilibrium space charge model and different from the scaling behavior of alternative models. The origin of space charge potential was investigated by numerical calculation of the electrical potential in a two-phase model. It was found, that a positive excess charge at grain boundaries of cerium oxide is caused by an enhanced oxygen deficiency at the grain boundary core. The influence of acceptor ion doping in the dilute limit and of non-equilibrium distribution of acceptor ions on electrical conductivity was also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuller, H.L., Nowick, A.S., J. Electrochem. Soc. 126, 209 (1979).Google Scholar
2. Tuller, H.L. in Nonstoichiometric Oxides, edited by Sørensen, T.O., (Academic Press, New York, 1981) p. 271.Google Scholar
3. Tschöpe, A., Sommer, E., Birringer, R., Solid State Ionics 139, 255 (2001).Google Scholar
4. Chiang, Y.-M., Lavik, E.B., Kosacki, I., Tuller, H.L., and Ying, J.Y., J. Electroceramics 1, 7 (1997).Google Scholar
5. Hwang, J.H., Mason, T.O., Z. Phys. Chem. 207, 21 (1998).Google Scholar
6. Koacki, I., Suzuki, T., Anderson, H.U., in Solid State Ionic Devices, edited by Wachsman, E.D., Liu, M.-L., Akridge, J.R., Yamazoe, N. (Electrochemical Society Proc. 99–13, Pennington, 1999), p. 190.Google Scholar
7. Sommer, E., diploma thesis, Universität des Saarlandes, 1997.Google Scholar
8. Tschöpe, A., Ying, J.Y., Tuller, H.L., Sensor & Actuators B31, 111 (1992).Google Scholar
9. Kim, S., Maier, J., J. Electrochem. Soc. 149, J73–J83 (2002).Google Scholar
10. Tschöpe, A., Kilassonia, S., Zapp, B., Birringer, R., Solid State Ionics 149, 261 (2002).Google Scholar
11. Maier, J., Prog. Solid State Chem. 23, 171 (1995).Google Scholar
12. Tschöpe, A., Solid State Ionics 139, 267 (2001).Google Scholar
13. Tschöpe, A., Birringer, R.B., J. Electroceramics 7, 169 (2001).Google Scholar
14. Markovich, P.A., “Semiconductor Equations” (Springer Verlag, Wien, 1990).Google Scholar
15. Bäuerle, C., diploma thesis, Universität des Saarlandes, 2001.Google Scholar
16. Jamnik, J., Maier, J., Pejovnik, S., Solid State Ionics 75, 51 (1995).Google Scholar
17. Frenkel, J., “Kinetic Theory of Liquids” (Oxford Univ. Press, New York, 1946).Google Scholar
18. Kliewer, K.L., Koehler, J.S., Phys. Rev. 140, 1226 (1965).Google Scholar
19. Evans, D.F., Wennerström, H., “The Colloidal Domain” (VCH Publ., New York, 1994) p. 110.Google Scholar
20. McLean, D., “Grain boundaries in Metals” (Oxford Univ. Press, 1957).Google Scholar
21. DeHoff, R.T. in Applied Metallography, edited by Van der Voort, G.F. (Van Nostrand, New York, 1986) p. 89.Google Scholar
22. Waser, R., Hagenbeck, R., Acta mater. 48, 797 (2000).Google Scholar