Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-06T16:25:50.486Z Has data issue: false hasContentIssue false

Spatial and Temporal Characteristics of the Semiconductor to Metallic Phase Transition in VO2 Thin Films

Published online by Cambridge University Press:  03 September 2012

Mark Corbett
Affiliation:
Defence Research Agency St Andrews Road, Malvern, WR14 3PS, UK
Keith L Lewis
Affiliation:
Defence Research Agency St Andrews Road, Malvern, WR14 3PS, UK
Andrew M Pitt
Affiliation:
Defence Research Agency St Andrews Road, Malvern, WR14 3PS, UK
Get access

Abstract

Vanadium dioxide exhibits a semiconductor to metallic phase transition at a temperature of about 68 °C. This can be exploited in the form of optical thin film structures which will exhibit non-linear behaviour when exposed to pulsed infra-red radiation. Since the phase transition is structural in nature, it is of interest to explore the temporal and spatial properties when irradiated with pulsed laser sources. Fast CMT detectors have been used to resolve nanosecond temporal detail on an experimental basis and the spatial charateristics have been explored using a simple adiabatic heating model. The dynamic transmission values measured for VO2 devices are complex combinations of the temporally and spatially varying characteristics of the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eden, D D : Opt Eng 20(3) 377–8 (1981)Google Scholar
2. Klakhaev, A: Sov Tech Phys Lett (USA) 17(3) 167 (1991)Google Scholar
3. Lee, C E, Atkins, R A, Gibler, W N, Taylor, H F: App Opt 28(21) 45114512 (1989)Google Scholar
4. Dvoryankin, V F, Egorov, F A, Potapov, V T, Sokolovskii, A A, Temirov, Yu Sh: Soy Phys Tech Phys Lett (USA) 15(6) 474475 (J1989)Google Scholar
5. Jorgensen, G V, Lee, J C: Sol Energy Mater (Neth) 14(3–5) 205214 (1987)Google Scholar
6. Lee, J C, Jorgensen, G V, Lin, R J : Proc SPIE Int Soc Opt Eng (USA) 692 27 (1987)Google Scholar
7. Babulanam, S M, Erikksson, T S, Nicklasson, G A, Granqvist, C G: Proc SPIE Int Soc Opt Eng 692 818 (1987)Google Scholar
8. Idlis, B G, Kopaev, Yu V: Solid State Communications 45(3) 3014 Google Scholar
9. Honig, J M, Zandt, L L Van: 1975 Annual Review of Materials in Science 5 225278 Google Scholar
10. Razavi, A, Hughes, T, Antinovich, J, Hoffman, J: J Vac Sci Technol A 7(3) p 13101313 (1989)Google Scholar
11. Chain, E E App Opt 30(19) 27822787 (1991)Google Scholar
12. Partlow, D P, Gurkovich, S R, Radford, K C, Denes, L J: J App Phys 70(1) 443452 (1991)Google Scholar
13. Bilenko, D I, Lodgauz, V A, Khasina, E I: Sov Phys Tech Phys 34(9) 10401042 (1989)Google Scholar
14. Songwei, Lu, Lisong, Hou, Fuxi, Gan: Proc SPIE Int Soc Opt Eng 1230 690–1 (1990)Google Scholar
15. Temirov, Y S, Dvoryankin, V F, Potapov, V T, Sokolovskii, A A: Sov Tech Phys Lett (USA) 17(4) 295296 (1991)Google Scholar
16. Egorov, F A, Temirov, Yu Sh, Sokolovskii, A A, Dvoryankin, V F, Potapov, V T, Romanova, S: Sov Tech Phys Lett (USA) 15(9) 664665 (1989)Google Scholar
17. Case, F C: J Vac Sci Technol A 6(3) 2010–13 (1988)Google Scholar
18. Bilenko, D I, Lodgauz, V A: Sov J Quantum Electron 15(1) 109111 (1985)Google Scholar
19. Berger, N K, Zhukov, E A, Novokhatskii, V V: Sov J Quantum Electron 14 505508 (1984)Google Scholar
20. Bugaev, A A, Gudyalis, V V, Zakharchenya, B P, Chudnovski, F A: JETP lett 34(8) 431 (1981)Google Scholar
21. Walser, R M, Becker, M F: AIP Conf Proc (USA) number 50 117122 Google Scholar
22. Bugaev, A A, Zakharchenya, B P, Chudnovskii, F A: Sov J Quantum Electron 11(12) 16381639 (1981)Google Scholar