Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T05:47:00.196Z Has data issue: false hasContentIssue false

Strain Anisotropies in Core/Shell Magnetic Nanostructures

Published online by Cambridge University Press:  17 March 2011

Georgia C. Papaefthymiou*
Affiliation:
Department of Physics, Villanova University, Villanova, PA 19085
Get access

Abstract

The magnetic properties of nanosized iron-oxo molecular clusters have been investigated via Mössbauer spectroscopy and compared to those of silica coated iron-oxide nanoparticles. The clusters, prepared by controlled hydrolytic iron polymerization reactions, contain a ∼ 1.2 nm diameter magnetic core of spin-coupled iron ions surrounded by a shell of benzoate ligands. The nanoparticles, prepared via sol-gel synthesis, contain a ∼ 4.0 nm average diameter γ-Fe2O3 core coated by a shell of SiO2. Both systems exhibit magnetic bistability at low temperatures with estimated magnetic anisotropy constants of Keff = 0.63x105 J/m3 for the clusters and Keff = 0.55 ×105 J/m3 for the particles. The similar values of Keff indicate that these two systems experience similar degrees of strain at the core/shell interface. This is further supported by the values of the quadrupole splitting, ΔEQ=0.77 mm/s for the clusters and ΔEQ=0.75 mm/s for the particles, pointing to same degree of distortion from pure octahedral or tetrahedral symmetry at the iron coordination sites for either system. Implications of these observations for the surface atomic structure of γ-Fe2O3 nanoparticles are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Magnetic Properties of Fine Particles, Dorman, J. and Fiorani, D. Eds. (North-Holland 1991).Google Scholar
2. Berkowitz, A.E., Parker, F.T., Spada, F.E. and Margulies, D., Magnetic Properties of Fine Particles, p.309.Google Scholar
3. Scientific and Clinical Applications of Magnetic Carriers, ed. by Häfeli, U., Schhtt, W., Teller, J. and Zborowski, (Plenum, New York, 1997).Google Scholar
4. Papaefthymiou, G. C., Hyperfine Interactions, 113, 357, (1998) and references there in.Google Scholar
5. Papaefthymiou, G. C., Phys. Rev. B, 46, 10366 (1992).Google Scholar
6. Micklitz, W., Mckee, V., Rardin, R. Lyn, Pence, L. E., Papaefthymiou, G.C., Bott, S.G. and Lippard, S.J., J. Am. Chem. Soc. 116, 8061 (1994).Google Scholar
7. Zhang, L., Papaefthymiou, G.C. and Ying, J.Y., J. Appl. Phys. 81, 6892 (1997).Google Scholar
8. Brown, W.F. Jr., Phys. Rev., 130, 1677 (1963).Google Scholar
9. Sohn, B.H., Cohen, R.E. and Papaefthymiou, G.C., J. Mag. Mag. Mat. 182, 216 (1998).Google Scholar
10. Chien, C.L., in: Science and Technology of Nanostructured Magnetic Materials, Hadjipanayis, G.C., Prinz, G.A. Eds., NATO ASI Series B, 259 (Plenum Press, N.Y. 1991) p. 4772 Google Scholar
11. Dickson, D.P.E., Reid, N.M., Hunt, C., Williams, H.D., Hilo, M.E. and O'Grandy, K., J. Mag. Mag. Mat., 125, 345 (1993).Google Scholar
12. Mrrup, S. and Topsre, H., J. Appl. Phys. 11, 63 (1976).Google Scholar
13. Papaefthymiou, G.C., Mat. Res. Soc. Symp. Proc. 286, (1993) p. 67.Google Scholar
14. Takei, H. and Shiba, S., J. Phys. Soc. Jpn., 21, 1255 (1966).Google Scholar
15. Morrish, A.H. and Valstyn, E.P., J. Phys. Soc. Jpn., 17B–1, 392 (1962).Google Scholar
16. Morrish, A.H., The Physical Principles of Magnetism (John Wiley & Sons, New York, 1965).Google Scholar
17. Coey, J.M.D., Phys. Rev. Lett., 17, 1140 (1971).Google Scholar
18. Kadama, R.H., Berkowitz, A.E., McNiff, E.J. Jr., and Foner, S., Phys. Rev. Lett., 77, 394 (1996)Google Scholar
19. Brabers, V.A.M. in: Handbook of Magnetic Materials, Buschow, K.H.J. Ed. (Elsevier, Amsterdam, 1995), vol. 8, p. 189.Google Scholar