Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T14:12:35.314Z Has data issue: false hasContentIssue false

Superparamagnetic Ferrites Realization and Physical Obstacles

Published online by Cambridge University Press:  21 February 2011

D. Vollath
Affiliation:
Forschungszentrum Karlsruhe, P.O.Box 3640, D-76021 Karlsruhe, Germany
E. Pellegrin
Affiliation:
Forschungszentrum Karlsruhe, P.O.Box 3640, D-76021 Karlsruhe, Germany
D. V. Szabó
Affiliation:
Forschungszentrum Karlsruhe, P.O.Box 3640, D-76021 Karlsruhe, Germany
Get access

Abstract

In superparamagnetic materials, the change of the direction of the magnetization is not associated with the movement of Bloch walls, but with thermal fluctuation of the magnetization vector. Therefore, the resonance frequency of the Bloch walls is no longer limiting the maximum frequency for applications. The limit found in superparamagnetic materials is given by the frequency of electron spin resonance. This behavior was verified for spinelle type ferrites made of ceramic or polymer coated oxide nanoparticles produced by the microwave plasma process. By selecting the composition of the spinelle type ferrites the energy of magnetic anisotropy controlling the susceptibility and the maximum frequency for applications can be adjusted. Superparamagnetic materials have their frequency limit beyond 2 GHz. Coating of the particles reduces dipole – dipole interaction destroying superparamagnetism. Even when the susceptibility is in the order of magnitude of today's commercial ferrites, the saturation magnetization is found to be smaller than the theoretically expected value. This phenomenon is partly clarified by soft X-ray magnetic circular dichroism (SXMCD) measurements, showing a significant orbital magnetic moment anti arallel to the direction of the spin moment. Additionally, it was found that the amount of Fe2+ ions is possibly larger than expected by thermodynamic data of bulk materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jacobs, I. S. and Bean, C. P., Magnetism, edited by Rado, G. T. and Suhl, H. (Academic Press, New York, 1963), pp. 271 ff.Google Scholar
2. Vollath, D., Szabó, D. V., Taylor, R. D., Willis, J. O., J. Mater. Res. 12, 2175 (1997).Google Scholar
3. Morup, S., J. Magn. Magn. Materials 37, 39 (1983).Google Scholar
4. Bacri, J. C., Percinski, R., Salin, D., Cabuil, V., Massart, R., J. Magn. Magn. Materials 62, 36 (1986).Google Scholar
5. Smit, J., Win, H. P. J., Ferrite,(Philips Technical Library 1962), pp. 305 ff..Google Scholar
6. Vollath, D., Szabd, D. V., Fuchs, J., Nanostructured Materials 12, 433 (1999).Google Scholar
7. Vollath, D., Szabó, D. V., Fuchs, J. in Amorphous and Nanocn-stalline Materials for Hard and Soft Magnetic Applications(Mater. Res. Soc. Symp. Spring Meeting 1999) in the print.Google Scholar
8. Hahn, H., Eastman, J. A., Siegel, R. W., Ceram. Trans. B1, 1115 (1988).Google Scholar
9. Chang, W., Skandan, G., Hahn, H., Danforth, S. C., Kear, B. H., Nanostructured Materials 4, 345 (1994).Google Scholar
10. Vollath, D., Szabó, D. V., Nanostructured Materials 4, 927 (1994).Google Scholar
11. Vollath, D., German Patent G 94 03 581.4 (1994).Google Scholar
12. Vollath, D., Szabó, D. V., Seith, B., German Patent DE 19 638 601.2-43 (1996).Google Scholar
13. MacDonald, A. D., Microwave Breakdown in Gases, John Wiley & Sons, 1966.Google Scholar
14. Han, D. H., Wang, J. P., Luo, H. L., J. Magn. Magn. Materials 136, 176 (1994).Google Scholar
15. Parker, F. T., Foster, M. W., Margulies, D. T., Berkowitz, A. E., Phys. Rev. B 47 7885 (1993).Google Scholar
16. Groot, F. M. F. de, J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).Google Scholar
17. Thole, B. T., Carra, P., Sette, F., Laan, G. van der, Phys. Rev. Letters 68 1943 (1992).Google Scholar
18. Chen, C. T., Idzerda, Y. U., Lin, H.-J., Smith, N. V., Meigs, G., Chaban, E., Ho, G. H., Pellegrin, E., Sette, F., Phys. Rev. Letters 75 152 (1995).Google Scholar
19. Pellegrin, E., Hagelstein, M., Doyle, S., Moser, H. O., Fuchs, J., Vollath, D., Schuppler, S., James, M. A., Saxena, S. S., Niesen, L., Rogojanu, O., Sawatzky, G. A., Ferrero, C., Borowski, M., Tiernberg, O., Brookes, N. B. (unpublished).Google Scholar