Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-10T07:05:06.394Z Has data issue: false hasContentIssue false

Synchrotron Photoemission Studies of Surfaces and Overlayers

Published online by Cambridge University Press:  21 February 2011

T.-C. Chiang*
Affiliation:
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801
Get access

Abstract

High-resolution core-level photoemission spectroscopy allows the distinction of atoms in different layers and in inequivalent sites by their binding energy shifts. By comparison with model structures and reference samples, the number of atoms in each distinct chemical configuration can be determined. The chemical shifts induced by adsorption can be correlated with the electronegativity difference between the substrate and the adsorbate atoms. These observations provide a quantitative description of the interaction and reaction between adsorbates and surfaces, and important information about the atomic structure and the electronic properties can be deduced. Results from several representative systems including the adsorption of In, Ag, and Sn on Si(100) will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chiang, T.-C., CRC Crit. Rev. Solid-State Mater. Sci. 14, 269 (1988).Google Scholar
2. Rich, D. H., Samsavar, A., Miller, T., Lin, H. F., Chiang, T.-C., Phys. Rev. Lett. 58, 579 (1987); D. H. Rich, A. Samsavar, T. Miller, H. F. Lin, and T.-C. Chiang, Mat. Res. Soc. Symp, Proc. 94, 219 (1987).CrossRefGoogle Scholar
3. Samsavar, A., Miller, T., and Chiang, T.-C., Phys. Rev. (to be published).Google Scholar
4. Rich, D. H., Miller, T., Samsavar, A., Lin, H. F., and Chiang, T.-C., Phys. Rev. B 37, 10221 (1988).Google Scholar
5. Rich, D. H., Miller, T., and Chiang, T.-C., Phys. Rev. B 37, 3124 (1988).Google Scholar
6. Hamers, J., Tromp, R. M., and Demuth, J. E., Phys. Rev. B 34, 5343 (1986).CrossRefGoogle Scholar
7. Takayanagi, K., Tanishiro, Y., Takagashi, S., and Takahashi, M., Surf. Sci. 164, 367 (1985); G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 56, 1972 (1986).CrossRefGoogle Scholar
8. Rich, D. H., Miller, T., and Chiang, T.-C., Phys. Rev. Lett. 60, 357 (1988).Google Scholar
9. Knall, J., Sundgren, J.-E., Hansson, G. V., and Greene, J. E., Surf. Sci. 166, 512 (1986).CrossRefGoogle Scholar
10. Sanderson, R. T., Chemical Bonds and Bond Energy, (Academic, New York, 1971).Google Scholar
11. Hollinger, G. and Himpsel, F., Phys. Rev. B 28, 3651 (1983).Google Scholar
12. McFeely, F. R., Monar, F. F., Shinn, N. D., Landgren, G., and Himpsel, F. J., Phys. Rev. B 30, 764 (1984).Google Scholar
13. Olmstead, M. A., Bringans, R. D., Uhrberg, R. I. G., and Bachrach, R. Z., Phys. Rev. B 34, 6041 (1986); R. D. Bringans, M. A. Olmstead, R. I. G. Uhrberg, and R. Z. Bachrach, Phys. Rev. B 36, 9569 (1987).Google Scholar
14. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A., and Steimann, W., Phys. Rev. B 35, 8184 (1987).CrossRefGoogle Scholar
15. Schnell, R. D., Himpsel, F. J., Bongen, A., Rieger, D., and Steinmann, W., Phys. Rev. B 32, 8052 (1985).CrossRefGoogle Scholar