Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-09T15:11:47.335Z Has data issue: false hasContentIssue false

Synergistic photo-release of drugs by non-linear excitation

Published online by Cambridge University Press:  03 June 2014

Valerio Voliani*
Affiliation:
NEST- Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy). Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy).
Giovanni Signore
Affiliation:
Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy).
Orazio Vittorio
Affiliation:
Children's Cancer Institute Australia, Lowy Cancer Research Centre and Australian Centre for Nanomedicine, University of New South Wales, Randwick, New South Wales (Australia).
Paolo Faraci
Affiliation:
NEST- Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy).
Stefano Luin
Affiliation:
NEST- Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy).
Julia Peréz-Prieto
Affiliation:
Universidad de Valencia, Instituto de Ciencia Molecular, ICMol, Catedrático Jose Beltrán, 2,46980 Paterna, Valencia (Spain)
Fabio Beltram
Affiliation:
NEST- Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy).
*
Get access

Abstract

Nanomaterials engineered in novel multi-modular systems in which every component works in a synergistic way with others could potentially lead to a completely new type of tools for nanomedicine. The development of nanostructures able to release drugs directly within the target after a stimulus can drastically improve the therapeutics efficiency by reducing side effects. Gold nanoparticles offer one of the most suitable platforms for the development of modular nano-devices. On the one hand, their surface properties enable effective coating by peptides containing at least one cysteine, thus yielding stable and non-cytotoxic systems. On the other, their intriguing photophysics, characterized by the surface plasmon resonance, can be exploited for novel excitation schemes. Doxorubicin is a widely used, but toxic, cancer chemotherapeutic agent. In order to localize its therapeutic action while minimizing its side effects, doxorubicin was covalently conjugated to 30 nm peptide-encapsulated gold nanospheres by click-chemistry and then it was photo-released in a controlled fashion through the cleavage of the 1,2,3-triazolic ring by a multiphoton process using 561 nm irradiation at µW power. Selective apoptosis of human osteosarcoma (U2OS) cells was observed only in the irradiated 100x100 micron area in less than six minutes after the stimulus. Notably, the apoptotic effect of doxorubicin was completely inhibited for at least eight hours until its release “on demand” was externally light-triggered.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., … Li, X. (2007). Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 7(5), 1318–22. doi:10.1021/nl070345g CrossRefGoogle ScholarPubMed
Docheva, D., & Padula, D. (2008). Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. Journal of Cellular …, 12(2), 537552. doi:JCMM138 [pii] 10.1111/j.1582-4934.2007.00138.x Google ScholarPubMed
Dreaden, E. C. E., Alkilany, A. A. M., Huang, X., Murphy, C. J., & El-Sayed, M. a. (2011). The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev …, 41(7), 27402779. doi:10.1039/c1cs15237h CrossRefGoogle ScholarPubMed
Dreaden, E., Mackey, M., & Huang, X. (2011). Beating cancer in multiple ways using nanogold. Chemical Society …, 40, 33913404. Retrieved from http://pubs.rsc.org/en/content/articlehtml/2011/cs/c0cs00180e CrossRefGoogle ScholarPubMed
El-Kareh, A., & Secomb, T. (2005). Two-mechanism peak concentration model for cellular pharmacodynamics of Doxorubicin. Neoplasia (New York, NY), 7(7), 705713. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16026650 CrossRefGoogle ScholarPubMed
Heijn, M., Roberge, S., & Jain, R. (1999). Cellular membrane permeability of anthracyclines does not correlate with their delivery in a tissue-isolated tumor. Cancer Research, 59(17), 44584463. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10485498 Google ScholarPubMed
Jaruga, E., Salvioli, S., & Dobrucki, J. (1998)., reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin. FEBS Letters, 433(3), 287293. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0014579398009193?showall=true CrossRefGoogle ScholarPubMed
Kim, C., Ghosh, P., & Rotello, V. M. (2009). Multimodal drug delivery using gold nanoparticles. Nanoscale, 1(1), 61–7. doi:10.1039/b9nr00112c CrossRefGoogle ScholarPubMed
Kolb, H. H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: diverse chemical function from a few good reactions. … Chemie International Edition, 40(11), 20042021. doi:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2–53.0.CO;2-5>CrossRefGoogle ScholarPubMed
Llevot, A., & Astruc, D. (2012). Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chemical Society Reviews, 41(1), 242257. doi:10.1039/c1cs15080d CrossRefGoogle Scholar
Mankhetkorn, S., & Dubru, F. (1996). resistance factor, kinetics of uptake, and kinetics of the P-glycoprotein-mediated efflux of doxorubicin, daunorubicin, 8-(S)-fluoroidarubicin, and idarubicin in multidrug-. Molecular …, 49(3), 532539. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8643093 Google ScholarPubMed
Peer, D., Karp, J., & Hong, S. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751760. doi:nnano.2007.387 [pii] 10.1038/nnano.2007.387 CrossRefGoogle ScholarPubMed
Vittorio, O., Voliani, V., Faraci, P., Karmakar, B., Iemma, F., Hampel, S., … Cirillo, G. (2014). Magnetic Catechin-Dextran conjugate as targeted therapeutic for pancreatic tumour cells. Journal of Drug Targeting, 2330, 18. doi:10.3109/1061186X.2013.878941 Google Scholar
Voliani, V., González-Béjar, M., Herranz-Pérez, V., Duran-Moreno, M., Signore, G., Garcia-Verdugo, J. M., & Pérez-Prieto, J. (2013). Orthogonal Functionalisation of Upconverting NaYF4 Nanocrystals. Chemistry a European Journal, 19(40), 1353813546. doi:10.1002/chem.201301353 CrossRefGoogle ScholarPubMed
Voliani, V., Luin, S., Ricci, F., & Beltram, F. (2010). Single-step bifunctional coating for selectively conjugable nanoparticles. Nanoscale, 2(12), 2783–9. doi:10.1039/c0nr00350f CrossRefGoogle ScholarPubMed
Voliani, V., Ricci, F., Luin, S., & Beltram, F. (2012). Peptidic coating for gold nanospheres multifunctionalizable with photostable and photolabile moieties. Journal of Materials Chemistry, 22(29), 1448714493. doi:10.1039/c2jm31782f CrossRefGoogle Scholar
Voliani, V., Ricci, F., Signore, G., Nifosì, R., Luin, S., & Beltram, F. (2011). Multiphoton molecular photorelease in click-chemistry-functionalized gold nanoparticles. Small (Weinheim an Der Bergstrasse, Germany), 7(23), 3271–5. doi:10.1002/smll.201101753 CrossRefGoogle ScholarPubMed
Voliani, V., Ricci, F., Signore, G., Nifosì, R., Luin, S., Beltram, F., & Nifosi, R. (2012). Smart Delivery and Controlled Drug Release with Gold Nanoparticles. Recent Patent on Nanomedicine, 2(1), 3444.Google Scholar
Voliani, V., Signore, G., Vittorio, O., Faraci, P., Luin, S., Peréz-Prieto, J., & Beltram, F. (2013). Cancer phototherapy in living cells by multiphoton release of doxorubicin from gold nanospheres. Journal of Materials Chemistry B, 1(34), 4225. doi:10.1039/c3tb20798f CrossRefGoogle Scholar
You, J., Zhang, R., Zhang, G., & Zhong, M. (2012). Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. Journal of Controlled Release, 158(2), 319328. doi:S0168-3659(11)01000-5 [pii] 10.1016/j.jconrel.2011.10.028 CrossRefGoogle ScholarPubMed